merge main

This commit is contained in:
JzoNg 2024-10-14 10:29:52 +08:00
commit 684896d100
639 changed files with 20988 additions and 2952 deletions

View File

@ -39,7 +39,7 @@ jobs:
api/pyproject.toml
api/poetry.lock
- name: Poetry check
- name: Check Poetry lockfile
run: |
poetry check -C api --lock
poetry show -C api
@ -47,6 +47,9 @@ jobs:
- name: Install dependencies
run: poetry install -C api --with dev
- name: Check dependencies in pyproject.toml
run: poetry run -C api bash dev/pytest/pytest_artifacts.sh
- name: Run Unit tests
run: poetry run -C api bash dev/pytest/pytest_unit_tests.sh

View File

@ -125,7 +125,7 @@ jobs:
with:
images: ${{ env[matrix.image_name_env] }}
tags: |
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') }}
type=raw,value=latest,enable=${{ startsWith(github.ref, 'refs/tags/') && !contains(github.ref, '-') }}
type=ref,event=branch
type=sha,enable=true,priority=100,prefix=,suffix=,format=long
type=raw,value=${{ github.ref_name }},enable=${{ startsWith(github.ref, 'refs/tags/') }}

View File

@ -17,7 +17,7 @@
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on Twitter"></a>
alt="follow on X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -196,10 +196,14 @@ If you'd like to configure a highly-available setup, there are community-contrib
#### Using Terraform for Deployment
Deploy Dify to Cloud Platform with a single click using [terraform](https://www.terraform.io/)
##### Azure Global
Deploy Dify to Azure with a single click using [terraform](https://www.terraform.io/).
- [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## Contributing
For those who'd like to contribute code, see our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
@ -219,7 +223,7 @@ At the same time, please consider supporting Dify by sharing it on social media
* [Github Discussion](https://github.com/langgenius/dify/discussions). Best for: sharing feedback and asking questions.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
* [Twitter](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
* [X(Twitter)](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
## Star history

View File

@ -17,7 +17,7 @@
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on Twitter"></a>
alt="follow on X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -179,10 +179,13 @@ docker compose up -d
#### استخدام Terraform للتوزيع
انشر Dify إلى منصة السحابة بنقرة واحدة باستخدام [terraform](https://www.terraform.io/)
##### Azure Global
استخدم [terraform](https://www.terraform.io/) لنشر Dify على Azure بنقرة واحدة.
- [Azure Terraform بواسطة @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform بواسطة @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## المساهمة

View File

@ -17,7 +17,7 @@
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on Twitter"></a>
alt="follow on X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -202,10 +202,14 @@ docker compose up -d
#### 使用 Terraform 部署
使用 [terraform](https://www.terraform.io/) 一键将 Dify 部署到云平台
##### Azure Global
使用 [terraform](https://www.terraform.io/) 一键部署 Dify 到 Azure。
- [Azure Terraform by @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform by @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=langgenius/dify&type=Date)](https://star-history.com/#langgenius/dify&Date)
@ -232,7 +236,7 @@ docker compose up -d
- [GitHub Issues](https://github.com/langgenius/dify/issues)。👉:使用 Dify.AI 时遇到的错误和问题,请参阅[贡献指南](CONTRIBUTING.md)。
- [电子邮件支持](mailto:hello@dify.ai?subject=[GitHub]Questions%20About%20Dify)。👉:关于使用 Dify.AI 的问题。
- [Discord](https://discord.gg/FngNHpbcY7)。👉:分享您的应用程序并与社区交流。
- [Twitter](https://twitter.com/dify_ai)。👉:分享您的应用程序并与社区交流。
- [X(Twitter)](https://twitter.com/dify_ai)。👉:分享您的应用程序并与社区交流。
- [商业许可](mailto:business@dify.ai?subject=[GitHub]Business%20License%20Inquiry)。👉:有关商业用途许可 Dify.AI 的商业咨询。
- [微信]() 👉:扫描下方二维码,添加微信好友,备注 Dify我们将邀请您加入 Dify 社区。
<img src="./images/wechat.png" alt="wechat" width="100"/>

View File

@ -17,7 +17,7 @@
alt="chat en Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="seguir en Twitter"></a>
alt="seguir en X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Descargas de Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -204,10 +204,13 @@ Si desea configurar una configuración de alta disponibilidad, la comunidad prop
#### Uso de Terraform para el despliegue
Despliega Dify en una plataforma en la nube con un solo clic utilizando [terraform](https://www.terraform.io/)
##### Azure Global
Utiliza [terraform](https://www.terraform.io/) para desplegar Dify en Azure con un solo clic.
- [Azure Terraform por @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform por @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## Contribuir
@ -228,7 +231,7 @@ Al mismo tiempo, considera apoyar a Dify compartiéndolo en redes sociales y en
* [Discusión en GitHub](https://github.com/langgenius/dify/discussions). Lo mejor para: compartir comentarios y hacer preguntas.
* [Reporte de problemas en GitHub](https://github.com/langgenius/dify/issues). Lo mejor para: errores que encuentres usando Dify.AI y propuestas de características. Consulta nuestra [Guía de contribución](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Lo mejor para: compartir tus aplicaciones y pasar el rato con la comunidad.
* [Twitter](https://twitter.com/dify_ai). Lo mejor para: compartir tus aplicaciones y pasar el rato con la comunidad.
* [X(Twitter)](https://twitter.com/dify_ai). Lo mejor para: compartir tus aplicaciones y pasar el rato con la comunidad.
## Historial de Estrellas

View File

@ -17,7 +17,7 @@
alt="chat sur Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="suivre sur Twitter"></a>
alt="suivre sur X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Tirages Docker" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -202,10 +202,13 @@ Si vous souhaitez configurer une configuration haute disponibilité, la communau
#### Utilisation de Terraform pour le déploiement
Déployez Dify sur une plateforme cloud en un clic en utilisant [terraform](https://www.terraform.io/)
##### Azure Global
Utilisez [terraform](https://www.terraform.io/) pour déployer Dify sur Azure en un clic.
- [Azure Terraform par @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform par @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## Contribuer
@ -226,7 +229,7 @@ Dans le même temps, veuillez envisager de soutenir Dify en le partageant sur le
* [Discussion GitHub](https://github.com/langgenius/dify/discussions). Meilleur pour: partager des commentaires et poser des questions.
* [Problèmes GitHub](https://github.com/langgenius/dify/issues). Meilleur pour: les bogues que vous rencontrez en utilisant Dify.AI et les propositions de fonctionnalités. Consultez notre [Guide de contribution](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Meilleur pour: partager vos applications et passer du temps avec la communauté.
* [Twitter](https://twitter.com/dify_ai). Meilleur pour: partager vos applications et passer du temps avec la communauté.
* [X(Twitter)](https://twitter.com/dify_ai). Meilleur pour: partager vos applications et passer du temps avec la communauté.
## Historique des étoiles

View File

@ -17,7 +17,7 @@
alt="Discordでチャット"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="Twitterでフォロー"></a>
alt="X(Twitter)でフォロー"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -68,7 +68,7 @@ DifyはオープンソースのLLMアプリケーション開発プラットフ
プロンプトの作成、モデルパフォーマンスの比較が行え、チャットベースのアプリに音声合成などの機能も追加できます。
**4. RAGパイプライン**:
ドキュメントの取り込みから検索までをカバーする広範なRAG機能ができます。ほかにもPDF、PPT、その他の一般的なドキュメントフォーマットからのテキスト抽出のサーポイントも提供します。
ドキュメントの取り込みから検索までをカバーする広範なRAG機能ができます。ほかにもPDF、PPT、その他の一般的なドキュメントフォーマットからのテキスト抽出のサポートも提供します。
**5. エージェント機能**:
LLM Function CallingやReActに基づくエージェントの定義が可能で、AIエージェント用のプリビルトまたはカスタムツールを追加できます。Difyには、Google検索、DALL·E、Stable Diffusion、WolframAlphaなどのAIエージェント用の50以上の組み込みツールが提供します。
@ -201,10 +201,13 @@ docker compose up -d
#### Terraformを使用したデプロイ
##### Azure Global
[terraform](https://www.terraform.io/) を使用して、AzureにDifyをワンクリックでデプロイします。
- [nikawangのAzure Terraform](https://github.com/nikawang/dify-azure-terraform)
[terraform](https://www.terraform.io/) を使用して、ワンクリックでDifyをクラウドプラットフォームにデプロイします
##### Azure Global
- [@nikawangによるAzure Terraform](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [@sotazumによるGoogle Cloud Terraform](https://github.com/DeNA/dify-google-cloud-terraform)
## 貢献
@ -225,7 +228,7 @@ docker compose up -d
* [Github Discussion](https://github.com/langgenius/dify/discussions). 主に: フィードバックの共有や質問。
* [GitHub Issues](https://github.com/langgenius/dify/issues). 主に: Dify.AIを使用する際に発生するエラーや問題については、[貢献ガイド](CONTRIBUTING_JA.md)を参照してください
* [Discord](https://discord.gg/FngNHpbcY7). 主に: アプリケーションの共有やコミュニティとの交流。
* [Twitter](https://twitter.com/dify_ai). 主に: アプリケーションの共有やコミュニティとの交流。
* [X(Twitter)](https://twitter.com/dify_ai). 主に: アプリケーションの共有やコミュニティとの交流。

View File

@ -17,7 +17,7 @@
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on Twitter"></a>
alt="follow on X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -202,10 +202,13 @@ If you'd like to configure a highly-available setup, there are community-contrib
#### Terraform atorlugu pilersitsineq
##### Azure Global
Atoruk [terraform](https://www.terraform.io/) Dify-mik Azure-mut ataatsikkut ikkussuilluarlugu.
- [Azure Terraform atorlugu @nikawang](https://github.com/nikawang/dify-azure-terraform)
wa'logh nIqHom neH ghun deployment toy'wI' [terraform](https://www.terraform.io/) lo'laH.
##### Azure Global
- [Azure Terraform mung @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform qachlot @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## Contributing
@ -228,7 +231,7 @@ At the same time, please consider supporting Dify by sharing it on social media
). Best for: sharing feedback and asking questions.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
* [Twitter](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
* [X(Twitter)](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
## Star History

View File

@ -17,7 +17,7 @@
alt="chat on Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="follow on Twitter"></a>
alt="follow on X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -39,7 +39,6 @@
<a href="./README_AR.md"><img alt="README بالعربية" src="https://img.shields.io/badge/العربية-d9d9d9"></a>
<a href="./README_TR.md"><img alt="Türkçe README" src="https://img.shields.io/badge/Türkçe-d9d9d9"></a>
<a href="./README_VI.md"><img alt="README Tiếng Việt" src="https://img.shields.io/badge/Ti%E1%BA%BFng%20Vi%E1%BB%87t-d9d9d9"></a>
</p>
@ -195,10 +194,14 @@ Dify를 Kubernetes에 배포하고 프리미엄 스케일링 설정을 구성했
#### Terraform을 사용한 배포
[terraform](https://www.terraform.io/)을 사용하여 단 한 번의 클릭으로 Dify를 클라우드 플랫폼에 배포하십시오
##### Azure Global
[terraform](https://www.terraform.io/)을 사용하여 Azure에 Dify를 원클릭으로 배포하세요.
- [nikawang의 Azure Terraform](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [sotazum의 Google Cloud Terraform](https://github.com/DeNA/dify-google-cloud-terraform)
## 기여
코드에 기여하고 싶은 분들은 [기여 가이드](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md)를 참조하세요.

View File

@ -17,7 +17,7 @@
alt="Discord'da sohbet et"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="Twitter'da takip et"></a>
alt="X(Twitter)'da takip et"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Çekmeleri" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -200,9 +200,13 @@ Yüksek kullanılabilirliğe sahip bir kurulum yapılandırmak isterseniz, Dify'
#### Dağıtım için Terraform Kullanımı
Dify'ı bulut platformuna tek tıklamayla dağıtın [terraform](https://www.terraform.io/) kullanarak
##### Azure Global
[Terraform](https://www.terraform.io/) kullanarak Dify'ı Azure'a tek tıklamayla dağıtın.
- [@nikawang tarafından Azure Terraform](https://github.com/nikawang/dify-azure-terraform)
- [Azure Terraform tarafından @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform tarafından @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## Katkıda Bulunma
@ -222,7 +226,7 @@ Aynı zamanda, lütfen Dify'ı sosyal medyada, etkinliklerde ve konferanslarda p
* [Github Tartışmaları](https://github.com/langgenius/dify/discussions). En uygun: geri bildirim paylaşmak ve soru sormak için.
* [GitHub Sorunları](https://github.com/langgenius/dify/issues). En uygun: Dify.AI kullanırken karşılaştığınız hatalar ve özellik önerileri için. [Katkı Kılavuzumuza](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) bakın.
* [Discord](https://discord.gg/FngNHpbcY7). En uygun: uygulamalarınızı paylaşmak ve toplulukla vakit geçirmek için.
* [Twitter](https://twitter.com/dify_ai). En uygun: uygulamalarınızı paylaşmak ve toplulukla vakit geçirmek için.
* [X(Twitter)](https://twitter.com/dify_ai). En uygun: uygulamalarınızı paylaşmak ve toplulukla vakit geçirmek için.
## Star history

View File

@ -17,7 +17,7 @@
alt="chat trên Discord"></a>
<a href="https://twitter.com/intent/follow?screen_name=dify_ai" target="_blank">
<img src="https://img.shields.io/twitter/follow/dify_ai?logo=X&color=%20%23f5f5f5"
alt="theo dõi trên Twitter"></a>
alt="theo dõi trên X(Twitter)"></a>
<a href="https://hub.docker.com/u/langgenius" target="_blank">
<img alt="Docker Pulls" src="https://img.shields.io/docker/pulls/langgenius/dify-web?labelColor=%20%23FDB062&color=%20%23f79009"></a>
<a href="https://github.com/langgenius/dify/graphs/commit-activity" target="_blank">
@ -196,10 +196,14 @@ Nếu bạn muốn cấu hình một cài đặt có độ sẵn sàng cao, có
#### Sử dụng Terraform để Triển khai
Triển khai Dify lên nền tảng đám mây với một cú nhấp chuột bằng cách sử dụng [terraform](https://www.terraform.io/)
##### Azure Global
Triển khai Dify lên Azure chỉ với một cú nhấp chuột bằng cách sử dụng [terraform](https://www.terraform.io/).
- [Azure Terraform bởi @nikawang](https://github.com/nikawang/dify-azure-terraform)
##### Google Cloud
- [Google Cloud Terraform bởi @sotazum](https://github.com/DeNA/dify-google-cloud-terraform)
## Đóng góp
Đối với những người muốn đóng góp mã, xem [Hướng dẫn Đóng góp](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) của chúng tôi.
@ -219,7 +223,7 @@ Triển khai Dify lên Azure chỉ với một cú nhấp chuột bằng cách s
* [Thảo luận GitHub](https://github.com/langgenius/dify/discussions). Tốt nhất cho: chia sẻ phản hồi và đặt câu hỏi.
* [Vấn đề GitHub](https://github.com/langgenius/dify/issues). Tốt nhất cho: lỗi bạn gặp phải khi sử dụng Dify.AI và đề xuất tính năng. Xem [Hướng dẫn Đóng góp](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md) của chúng tôi.
* [Discord](https://discord.gg/FngNHpbcY7). Tốt nhất cho: chia sẻ ứng dụng của bạn và giao lưu với cộng đồng.
* [Twitter](https://twitter.com/dify_ai). Tốt nhất cho: chia sẻ ứng dụng của bạn và giao lưu với cộng đồng.
* [X(Twitter)](https://twitter.com/dify_ai). Tốt nhất cho: chia sẻ ứng dụng của bạn và giao lưu với cộng đồng.
## Lịch sử Yêu thích

View File

@ -20,6 +20,9 @@ FILES_URL=http://127.0.0.1:5001
# The time in seconds after the signature is rejected
FILES_ACCESS_TIMEOUT=300
# Access token expiration time in minutes
ACCESS_TOKEN_EXPIRE_MINUTES=60
# celery configuration
CELERY_BROKER_URL=redis://:difyai123456@localhost:6379/1
@ -39,7 +42,7 @@ DB_DATABASE=dify
# Storage configuration
# use for store upload files, private keys...
# storage type: local, s3, azure-blob, google-storage, tencent-cos, huawei-obs, volcengine-tos
# storage type: local, s3, azure-blob, google-storage, tencent-cos, huawei-obs, volcengine-tos, baidu-obs, supabase
STORAGE_TYPE=local
STORAGE_LOCAL_PATH=storage
S3_USE_AWS_MANAGED_IAM=false
@ -79,6 +82,12 @@ HUAWEI_OBS_SECRET_KEY=your-secret-key
HUAWEI_OBS_ACCESS_KEY=your-access-key
HUAWEI_OBS_SERVER=your-server-url
# Baidu OBS Storage Configuration
BAIDU_OBS_BUCKET_NAME=your-bucket-name
BAIDU_OBS_SECRET_KEY=your-secret-key
BAIDU_OBS_ACCESS_KEY=your-access-key
BAIDU_OBS_ENDPOINT=your-server-url
# OCI Storage configuration
OCI_ENDPOINT=your-endpoint
OCI_BUCKET_NAME=your-bucket-name
@ -93,11 +102,16 @@ VOLCENGINE_TOS_ACCESS_KEY=your-access-key
VOLCENGINE_TOS_SECRET_KEY=your-secret-key
VOLCENGINE_TOS_REGION=your-region
# Supabase Storage Configuration
SUPABASE_BUCKET_NAME=your-bucket-name
SUPABASE_API_KEY=your-access-key
SUPABASE_URL=your-server-url
# CORS configuration
WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, vikingdb
VECTOR_STORE=weaviate
# Weaviate configuration
@ -162,6 +176,8 @@ PGVECTOR_PORT=5433
PGVECTOR_USER=postgres
PGVECTOR_PASSWORD=postgres
PGVECTOR_DATABASE=postgres
PGVECTOR_MIN_CONNECTION=1
PGVECTOR_MAX_CONNECTION=5
# Tidb Vector configuration
TIDB_VECTOR_HOST=xxx.eu-central-1.xxx.aws.tidbcloud.com
@ -195,6 +211,24 @@ OPENSEARCH_USER=admin
OPENSEARCH_PASSWORD=admin
OPENSEARCH_SECURE=true
# Baidu configuration
BAIDU_VECTOR_DB_ENDPOINT=http://127.0.0.1:5287
BAIDU_VECTOR_DB_CONNECTION_TIMEOUT_MS=30000
BAIDU_VECTOR_DB_ACCOUNT=root
BAIDU_VECTOR_DB_API_KEY=dify
BAIDU_VECTOR_DB_DATABASE=dify
BAIDU_VECTOR_DB_SHARD=1
BAIDU_VECTOR_DB_REPLICAS=3
# ViKingDB configuration
VIKINGDB_ACCESS_KEY=your-ak
VIKINGDB_SECRET_KEY=your-sk
VIKINGDB_REGION=cn-shanghai
VIKINGDB_HOST=api-vikingdb.xxx.volces.com
VIKINGDB_SCHEMA=http
VIKINGDB_CONNECTION_TIMEOUT=30
VIKINGDB_SOCKET_TIMEOUT=30
# Upload configuration
UPLOAD_FILE_SIZE_LIMIT=15
UPLOAD_FILE_BATCH_LIMIT=5
@ -263,6 +297,9 @@ HTTP_REQUEST_MAX_WRITE_TIMEOUT=600
HTTP_REQUEST_NODE_MAX_BINARY_SIZE=10485760
HTTP_REQUEST_NODE_MAX_TEXT_SIZE=1048576
# Respect X-* headers to redirect clients
RESPECT_XFORWARD_HEADERS_ENABLED=false
# Log file path
LOG_FILE=

View File

@ -26,7 +26,7 @@ from commands import register_commands
from configs import dify_config
# DO NOT REMOVE BELOW
from events import event_handlers
from events import event_handlers # noqa: F401
from extensions import (
ext_celery,
ext_code_based_extension,
@ -36,6 +36,7 @@ from extensions import (
ext_login,
ext_mail,
ext_migrate,
ext_proxy_fix,
ext_redis,
ext_sentry,
ext_storage,
@ -45,7 +46,7 @@ from extensions.ext_login import login_manager
from libs.passport import PassportService
# TODO: Find a way to avoid importing models here
from models import account, dataset, model, source, task, tool, tools, web
from models import account, dataset, model, source, task, tool, tools, web # noqa: F401
from services.account_service import AccountService
# DO NOT REMOVE ABOVE
@ -156,6 +157,7 @@ def initialize_extensions(app):
ext_mail.init_app(app)
ext_hosting_provider.init_app(app)
ext_sentry.init_app(app)
ext_proxy_fix.init_app(app)
# Flask-Login configuration
@ -181,10 +183,10 @@ def load_user_from_request(request_from_flask_login):
decoded = PassportService().verify(auth_token)
user_id = decoded.get("user_id")
account = AccountService.load_logged_in_account(account_id=user_id, token=auth_token)
if account:
contexts.tenant_id.set(account.current_tenant_id)
return account
logged_in_account = AccountService.load_logged_in_account(account_id=user_id)
if logged_in_account:
contexts.tenant_id.set(logged_in_account.current_tenant_id)
return logged_in_account
@login_manager.unauthorized_handler

View File

@ -347,6 +347,14 @@ def migrate_knowledge_vector_database():
index_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {"type": "elasticsearch", "vector_store": {"class_prefix": index_name}}
dataset.index_struct = json.dumps(index_struct_dict)
elif vector_type == VectorType.BAIDU:
dataset_id = dataset.id
collection_name = Dataset.gen_collection_name_by_id(dataset_id)
index_struct_dict = {
"type": VectorType.BAIDU,
"vector_store": {"class_prefix": collection_name},
}
dataset.index_struct = json.dumps(index_struct_dict)
else:
raise ValueError(f"Vector store {vector_type} is not supported.")

View File

@ -247,6 +247,12 @@ class HttpConfig(BaseSettings):
default=None,
)
RESPECT_XFORWARD_HEADERS_ENABLED: bool = Field(
description="Enable or disable the X-Forwarded-For Proxy Fix middleware from Werkzeug"
" to respect X-* headers to redirect clients",
default=False,
)
class InnerAPIConfig(BaseSettings):
"""
@ -354,9 +360,9 @@ class WorkflowConfig(BaseSettings):
)
class OAuthConfig(BaseSettings):
class AuthConfig(BaseSettings):
"""
Configuration for OAuth authentication
Configuration for authentication and OAuth
"""
OAUTH_REDIRECT_PATH: str = Field(
@ -365,7 +371,7 @@ class OAuthConfig(BaseSettings):
)
GITHUB_CLIENT_ID: Optional[str] = Field(
description="GitHub OAuth client secret",
description="GitHub OAuth client ID",
default=None,
)
@ -384,6 +390,11 @@ class OAuthConfig(BaseSettings):
default=None,
)
ACCESS_TOKEN_EXPIRE_MINUTES: PositiveInt = Field(
description="Expiration time for access tokens in minutes",
default=60,
)
class ModerationConfig(BaseSettings):
"""
@ -601,6 +612,7 @@ class PositionConfig(BaseSettings):
class FeatureConfig(
# place the configs in alphabet order
AppExecutionConfig,
AuthConfig, # Changed from OAuthConfig to AuthConfig
BillingConfig,
CodeExecutionSandboxConfig,
DataSetConfig,
@ -615,14 +627,13 @@ class FeatureConfig(
MailConfig,
ModelLoadBalanceConfig,
ModerationConfig,
OAuthConfig,
PositionConfig,
RagEtlConfig,
SecurityConfig,
ToolConfig,
UpdateConfig,
WorkflowConfig,
WorkspaceConfig,
PositionConfig,
# hosted services config
HostedServiceConfig,
CeleryBeatConfig,

View File

@ -8,9 +8,11 @@ from configs.middleware.cache.redis_config import RedisConfig
from configs.middleware.storage.aliyun_oss_storage_config import AliyunOSSStorageConfig
from configs.middleware.storage.amazon_s3_storage_config import S3StorageConfig
from configs.middleware.storage.azure_blob_storage_config import AzureBlobStorageConfig
from configs.middleware.storage.baidu_obs_storage_config import BaiduOBSStorageConfig
from configs.middleware.storage.google_cloud_storage_config import GoogleCloudStorageConfig
from configs.middleware.storage.huawei_obs_storage_config import HuaweiCloudOBSStorageConfig
from configs.middleware.storage.oci_storage_config import OCIStorageConfig
from configs.middleware.storage.supabase_storage_config import SupabaseStorageConfig
from configs.middleware.storage.tencent_cos_storage_config import TencentCloudCOSStorageConfig
from configs.middleware.storage.volcengine_tos_storage_config import VolcengineTOSStorageConfig
from configs.middleware.vdb.analyticdb_config import AnalyticdbConfig
@ -26,6 +28,7 @@ from configs.middleware.vdb.qdrant_config import QdrantConfig
from configs.middleware.vdb.relyt_config import RelytConfig
from configs.middleware.vdb.tencent_vector_config import TencentVectorDBConfig
from configs.middleware.vdb.tidb_vector_config import TiDBVectorConfig
from configs.middleware.vdb.vikingdb_config import VikingDBConfig
from configs.middleware.vdb.weaviate_config import WeaviateConfig
@ -190,6 +193,22 @@ class CeleryConfig(DatabaseConfig):
return self.CELERY_BROKER_URL.startswith("rediss://") if self.CELERY_BROKER_URL else False
class InternalTestConfig(BaseSettings):
"""
Configuration settings for Internal Test
"""
AWS_SECRET_ACCESS_KEY: Optional[str] = Field(
description="Internal test AWS secret access key",
default=None,
)
AWS_ACCESS_KEY_ID: Optional[str] = Field(
description="Internal test AWS access key ID",
default=None,
)
class MiddlewareConfig(
# place the configs in alphabet order
CeleryConfig,
@ -200,12 +219,14 @@ class MiddlewareConfig(
StorageConfig,
AliyunOSSStorageConfig,
AzureBlobStorageConfig,
BaiduOBSStorageConfig,
GoogleCloudStorageConfig,
TencentCloudCOSStorageConfig,
HuaweiCloudOBSStorageConfig,
VolcengineTOSStorageConfig,
S3StorageConfig,
OCIStorageConfig,
S3StorageConfig,
SupabaseStorageConfig,
TencentCloudCOSStorageConfig,
VolcengineTOSStorageConfig,
# configs of vdb and vdb providers
VectorStoreConfig,
AnalyticdbConfig,
@ -222,5 +243,7 @@ class MiddlewareConfig(
TiDBVectorConfig,
WeaviateConfig,
ElasticsearchConfig,
InternalTestConfig,
VikingDBConfig,
):
pass

View File

@ -0,0 +1,29 @@
from typing import Optional
from pydantic import BaseModel, Field
class BaiduOBSStorageConfig(BaseModel):
"""
Configuration settings for Baidu Object Storage Service (OBS)
"""
BAIDU_OBS_BUCKET_NAME: Optional[str] = Field(
description="Name of the Baidu OBS bucket to store and retrieve objects (e.g., 'my-obs-bucket')",
default=None,
)
BAIDU_OBS_ACCESS_KEY: Optional[str] = Field(
description="Access Key ID for authenticating with Baidu OBS",
default=None,
)
BAIDU_OBS_SECRET_KEY: Optional[str] = Field(
description="Secret Access Key for authenticating with Baidu OBS",
default=None,
)
BAIDU_OBS_ENDPOINT: Optional[str] = Field(
description="URL of the Baidu OSS endpoint for your chosen region (e.g., 'https://.bj.bcebos.com')",
default=None,
)

View File

@ -0,0 +1,24 @@
from typing import Optional
from pydantic import BaseModel, Field
class SupabaseStorageConfig(BaseModel):
"""
Configuration settings for Supabase Object Storage Service
"""
SUPABASE_BUCKET_NAME: Optional[str] = Field(
description="Name of the Supabase bucket to store and retrieve objects (e.g., 'dify-bucket')",
default=None,
)
SUPABASE_API_KEY: Optional[str] = Field(
description="API KEY for authenticating with Supabase",
default=None,
)
SUPABASE_URL: Optional[str] = Field(
description="URL of the Supabase",
default=None,
)

View File

@ -0,0 +1,45 @@
from typing import Optional
from pydantic import Field, NonNegativeInt, PositiveInt
from pydantic_settings import BaseSettings
class BaiduVectorDBConfig(BaseSettings):
"""
Configuration settings for Baidu Vector Database
"""
BAIDU_VECTOR_DB_ENDPOINT: Optional[str] = Field(
description="URL of the Baidu Vector Database service (e.g., 'http://vdb.bj.baidubce.com')",
default=None,
)
BAIDU_VECTOR_DB_CONNECTION_TIMEOUT_MS: PositiveInt = Field(
description="Timeout in milliseconds for Baidu Vector Database operations (default is 30000 milliseconds)",
default=30000,
)
BAIDU_VECTOR_DB_ACCOUNT: Optional[str] = Field(
description="Account for authenticating with the Baidu Vector Database",
default=None,
)
BAIDU_VECTOR_DB_API_KEY: Optional[str] = Field(
description="API key for authenticating with the Baidu Vector Database service",
default=None,
)
BAIDU_VECTOR_DB_DATABASE: Optional[str] = Field(
description="Name of the specific Baidu Vector Database to connect to",
default=None,
)
BAIDU_VECTOR_DB_SHARD: PositiveInt = Field(
description="Number of shards for the Baidu Vector Database (default is 1)",
default=1,
)
BAIDU_VECTOR_DB_REPLICAS: NonNegativeInt = Field(
description="Number of replicas for the Baidu Vector Database (default is 3)",
default=3,
)

View File

@ -33,3 +33,13 @@ class PGVectorConfig(BaseSettings):
description="Name of the PostgreSQL database to connect to",
default=None,
)
PGVECTOR_MIN_CONNECTION: PositiveInt = Field(
description="Min connection of the PostgreSQL database",
default=1,
)
PGVECTOR_MAX_CONNECTION: PositiveInt = Field(
description="Max connection of the PostgreSQL database",
default=5,
)

View File

@ -0,0 +1,37 @@
from typing import Optional
from pydantic import BaseModel, Field
class VikingDBConfig(BaseModel):
"""
Configuration for connecting to Volcengine VikingDB.
Refer to the following documentation for details on obtaining credentials:
https://www.volcengine.com/docs/6291/65568
"""
VIKINGDB_ACCESS_KEY: Optional[str] = Field(
default=None, description="The Access Key provided by Volcengine VikingDB for API authentication."
)
VIKINGDB_SECRET_KEY: Optional[str] = Field(
default=None, description="The Secret Key provided by Volcengine VikingDB for API authentication."
)
VIKINGDB_REGION: Optional[str] = Field(
default="cn-shanghai",
description="The region of the Volcengine VikingDB service.(e.g., 'cn-shanghai', 'cn-beijing').",
)
VIKINGDB_HOST: Optional[str] = Field(
default="api-vikingdb.mlp.cn-shanghai.volces.com",
description="The host of the Volcengine VikingDB service.(e.g., 'api-vikingdb.volces.com', \
'api-vikingdb.mlp.cn-shanghai.volces.com')",
)
VIKINGDB_SCHEME: Optional[str] = Field(
default="http",
description="The scheme of the Volcengine VikingDB service.(e.g., 'http', 'https').",
)
VIKINGDB_CONNECTION_TIMEOUT: Optional[int] = Field(
default=30, description="The connection timeout of the Volcengine VikingDB service."
)
VIKINGDB_SOCKET_TIMEOUT: Optional[int] = Field(
default=30, description="The socket timeout of the Volcengine VikingDB service."
)

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.8.3",
default="0.9.1",
)
COMMIT_SHA: str = Field(

View File

@ -37,7 +37,16 @@ from .auth import activate, data_source_bearer_auth, data_source_oauth, forgot_p
from .billing import billing
# Import datasets controllers
from .datasets import data_source, datasets, datasets_document, datasets_segments, file, hit_testing, website
from .datasets import (
data_source,
datasets,
datasets_document,
datasets_segments,
external,
file,
hit_testing,
website,
)
# Import explore controllers
from .explore import (

View File

@ -188,6 +188,7 @@ class ChatConversationApi(Resource):
subquery.c.from_end_user_session_id.ilike(keyword_filter),
),
)
.group_by(Conversation.id)
)
account = current_user

View File

@ -7,7 +7,7 @@ from flask_restful import Resource, reqparse
import services
from controllers.console import api
from controllers.console.setup import setup_required
from libs.helper import email, get_remote_ip
from libs.helper import email, extract_remote_ip
from libs.password import valid_password
from models.account import Account
from services.account_service import AccountService, TenantService
@ -40,17 +40,16 @@ class LoginApi(Resource):
"data": "workspace not found, please contact system admin to invite you to join in a workspace",
}
token = AccountService.login(account, ip_address=get_remote_ip(request))
token_pair = AccountService.login(account=account, ip_address=extract_remote_ip(request))
return {"result": "success", "data": token}
return {"result": "success", "data": token_pair.model_dump()}
class LogoutApi(Resource):
@setup_required
def get(self):
account = cast(Account, flask_login.current_user)
token = request.headers.get("Authorization", "").split(" ")[1]
AccountService.logout(account=account, token=token)
AccountService.logout(account=account)
flask_login.logout_user()
return {"result": "success"}
@ -106,5 +105,19 @@ class ResetPasswordApi(Resource):
return {"result": "success"}
class RefreshTokenApi(Resource):
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("refresh_token", type=str, required=True, location="json")
args = parser.parse_args()
try:
new_token_pair = AccountService.refresh_token(args["refresh_token"])
return {"result": "success", "data": new_token_pair.model_dump()}
except Exception as e:
return {"result": "fail", "data": str(e)}, 401
api.add_resource(LoginApi, "/login")
api.add_resource(LogoutApi, "/logout")
api.add_resource(RefreshTokenApi, "/refresh-token")

View File

@ -9,7 +9,7 @@ from flask_restful import Resource
from configs import dify_config
from constants.languages import languages
from extensions.ext_database import db
from libs.helper import get_remote_ip
from libs.helper import extract_remote_ip
from libs.oauth import GitHubOAuth, GoogleOAuth, OAuthUserInfo
from models.account import Account, AccountStatus
from services.account_service import AccountService, RegisterService, TenantService
@ -81,9 +81,14 @@ class OAuthCallback(Resource):
TenantService.create_owner_tenant_if_not_exist(account)
token = AccountService.login(account, ip_address=get_remote_ip(request))
token_pair = AccountService.login(
account=account,
ip_address=extract_remote_ip(request),
)
return redirect(f"{dify_config.CONSOLE_WEB_URL}?console_token={token}")
return redirect(
f"{dify_config.CONSOLE_WEB_URL}?access_token={token_pair.access_token}&refresh_token={token_pair.refresh_token}"
)
def _get_account_by_openid_or_email(provider: str, user_info: OAuthUserInfo) -> Optional[Account]:

View File

@ -49,7 +49,7 @@ class DatasetListApi(Resource):
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
ids = request.args.getlist("ids")
provider = request.args.get("provider", default="vendor")
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
@ -57,7 +57,7 @@ class DatasetListApi(Resource):
datasets, total = DatasetService.get_datasets_by_ids(ids, current_user.current_tenant_id)
else:
datasets, total = DatasetService.get_datasets(
page, limit, provider, current_user.current_tenant_id, current_user, search, tag_ids
page, limit, current_user.current_tenant_id, current_user, search, tag_ids
)
# check embedding setting
@ -110,6 +110,26 @@ class DatasetListApi(Resource):
nullable=True,
help="Invalid indexing technique.",
)
parser.add_argument(
"external_knowledge_api_id",
type=str,
nullable=True,
required=False,
)
parser.add_argument(
"provider",
type=str,
nullable=True,
choices=Dataset.PROVIDER_LIST,
required=False,
default="vendor",
)
parser.add_argument(
"external_knowledge_id",
type=str,
nullable=True,
required=False,
)
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
@ -123,6 +143,9 @@ class DatasetListApi(Resource):
indexing_technique=args["indexing_technique"],
account=current_user,
permission=DatasetPermissionEnum.ONLY_ME,
provider=args["provider"],
external_knowledge_api_id=args["external_knowledge_api_id"],
external_knowledge_id=args["external_knowledge_id"],
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
@ -211,6 +234,33 @@ class DatasetApi(Resource):
)
parser.add_argument("retrieval_model", type=dict, location="json", help="Invalid retrieval model.")
parser.add_argument("partial_member_list", type=list, location="json", help="Invalid parent user list.")
parser.add_argument(
"external_retrieval_model",
type=dict,
required=False,
nullable=True,
location="json",
help="Invalid external retrieval model.",
)
parser.add_argument(
"external_knowledge_id",
type=str,
required=False,
nullable=True,
location="json",
help="Invalid external knowledge id.",
)
parser.add_argument(
"external_knowledge_api_id",
type=str,
required=False,
nullable=True,
location="json",
help="Invalid external knowledge api id.",
)
args = parser.parse_args()
data = request.get_json()
@ -563,10 +613,12 @@ class DatasetRetrievalSettingApi(Resource):
case (
VectorType.MILVUS
| VectorType.RELYT
| VectorType.PGVECTOR
| VectorType.TIDB_VECTOR
| VectorType.CHROMA
| VectorType.TENCENT
| VectorType.PGVECTO_RS
| VectorType.BAIDU
| VectorType.VIKINGDB
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (
@ -577,6 +629,7 @@ class DatasetRetrievalSettingApi(Resource):
| VectorType.MYSCALE
| VectorType.ORACLE
| VectorType.ELASTICSEARCH
| VectorType.PGVECTOR
):
return {
"retrieval_method": [
@ -602,6 +655,8 @@ class DatasetRetrievalSettingMockApi(Resource):
| VectorType.CHROMA
| VectorType.TENCENT
| VectorType.PGVECTO_RS
| VectorType.BAIDU
| VectorType.VIKINGDB
):
return {"retrieval_method": [RetrievalMethod.SEMANTIC_SEARCH.value]}
case (

View File

@ -0,0 +1,263 @@
from flask import request
from flask_login import current_user
from flask_restful import Resource, marshal, reqparse
from werkzeug.exceptions import Forbidden, InternalServerError, NotFound
import services
from controllers.console import api
from controllers.console.datasets.error import DatasetNameDuplicateError
from controllers.console.setup import setup_required
from controllers.console.wraps import account_initialization_required
from fields.dataset_fields import dataset_detail_fields
from libs.login import login_required
from services.dataset_service import DatasetService
from services.external_knowledge_service import ExternalDatasetService
from services.hit_testing_service import HitTestingService
from services.knowledge_service import ExternalDatasetTestService
def _validate_name(name):
if not name or len(name) < 1 or len(name) > 100:
raise ValueError("Name must be between 1 to 100 characters.")
return name
def _validate_description_length(description):
if description and len(description) > 400:
raise ValueError("Description cannot exceed 400 characters.")
return description
class ExternalApiTemplateListApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self):
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
search = request.args.get("keyword", default=None, type=str)
external_knowledge_apis, total = ExternalDatasetService.get_external_knowledge_apis(
page, limit, current_user.current_tenant_id, search
)
response = {
"data": [item.to_dict() for item in external_knowledge_apis],
"has_more": len(external_knowledge_apis) == limit,
"limit": limit,
"total": total,
"page": page,
}
return response, 200
@setup_required
@login_required
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument(
"name",
nullable=False,
required=True,
help="Name is required. Name must be between 1 to 100 characters.",
type=_validate_name,
)
parser.add_argument(
"settings",
type=dict,
location="json",
nullable=False,
required=True,
)
args = parser.parse_args()
ExternalDatasetService.validate_api_list(args["settings"])
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
try:
external_knowledge_api = ExternalDatasetService.create_external_knowledge_api(
tenant_id=current_user.current_tenant_id, user_id=current_user.id, args=args
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
return external_knowledge_api.to_dict(), 201
class ExternalApiTemplateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, external_knowledge_api_id):
external_knowledge_api_id = str(external_knowledge_api_id)
external_knowledge_api = ExternalDatasetService.get_external_knowledge_api(external_knowledge_api_id)
if external_knowledge_api is None:
raise NotFound("API template not found.")
return external_knowledge_api.to_dict(), 200
@setup_required
@login_required
@account_initialization_required
def patch(self, external_knowledge_api_id):
external_knowledge_api_id = str(external_knowledge_api_id)
parser = reqparse.RequestParser()
parser.add_argument(
"name",
nullable=False,
required=True,
help="type is required. Name must be between 1 to 100 characters.",
type=_validate_name,
)
parser.add_argument(
"settings",
type=dict,
location="json",
nullable=False,
required=True,
)
args = parser.parse_args()
ExternalDatasetService.validate_api_list(args["settings"])
external_knowledge_api = ExternalDatasetService.update_external_knowledge_api(
tenant_id=current_user.current_tenant_id,
user_id=current_user.id,
external_knowledge_api_id=external_knowledge_api_id,
args=args,
)
return external_knowledge_api.to_dict(), 200
@setup_required
@login_required
@account_initialization_required
def delete(self, external_knowledge_api_id):
external_knowledge_api_id = str(external_knowledge_api_id)
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor or current_user.is_dataset_operator:
raise Forbidden()
ExternalDatasetService.delete_external_knowledge_api(current_user.current_tenant_id, external_knowledge_api_id)
return {"result": "success"}, 200
class ExternalApiUseCheckApi(Resource):
@setup_required
@login_required
@account_initialization_required
def get(self, external_knowledge_api_id):
external_knowledge_api_id = str(external_knowledge_api_id)
external_knowledge_api_is_using, count = ExternalDatasetService.external_knowledge_api_use_check(
external_knowledge_api_id
)
return {"is_using": external_knowledge_api_is_using, "count": count}, 200
class ExternalDatasetCreateApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self):
# The role of the current user in the ta table must be admin, owner, or editor
if not current_user.is_editor:
raise Forbidden()
parser = reqparse.RequestParser()
parser.add_argument("external_knowledge_api_id", type=str, required=True, nullable=False, location="json")
parser.add_argument("external_knowledge_id", type=str, required=True, nullable=False, location="json")
parser.add_argument(
"name",
nullable=False,
required=True,
help="name is required. Name must be between 1 to 100 characters.",
type=_validate_name,
)
parser.add_argument("description", type=str, required=False, nullable=True, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
# The role of the current user in the ta table must be admin, owner, or editor, or dataset_operator
if not current_user.is_dataset_editor:
raise Forbidden()
try:
dataset = ExternalDatasetService.create_external_dataset(
tenant_id=current_user.current_tenant_id,
user_id=current_user.id,
args=args,
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()
return marshal(dataset, dataset_detail_fields), 201
class ExternalKnowledgeHitTestingApi(Resource):
@setup_required
@login_required
@account_initialization_required
def post(self, dataset_id):
dataset_id_str = str(dataset_id)
dataset = DatasetService.get_dataset(dataset_id_str)
if dataset is None:
raise NotFound("Dataset not found.")
try:
DatasetService.check_dataset_permission(dataset, current_user)
except services.errors.account.NoPermissionError as e:
raise Forbidden(str(e))
parser = reqparse.RequestParser()
parser.add_argument("query", type=str, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
HitTestingService.hit_testing_args_check(args)
try:
response = HitTestingService.external_retrieve(
dataset=dataset,
query=args["query"],
account=current_user,
external_retrieval_model=args["external_retrieval_model"],
)
return response
except Exception as e:
raise InternalServerError(str(e))
class BedrockRetrievalApi(Resource):
# this api is only for internal testing
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("retrieval_setting", nullable=False, required=True, type=dict, location="json")
parser.add_argument(
"query",
nullable=False,
required=True,
type=str,
)
parser.add_argument("knowledge_id", nullable=False, required=True, type=str)
args = parser.parse_args()
# Call the knowledge retrieval service
result = ExternalDatasetTestService.knowledge_retrieval(
args["retrieval_setting"], args["query"], args["knowledge_id"]
)
return result, 200
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
api.add_resource(ExternalDatasetCreateApi, "/datasets/external")
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-knowledge-api")
api.add_resource(ExternalApiTemplateApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>")
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>/use-check")
# this api is only for internal test
api.add_resource(BedrockRetrievalApi, "/test/retrieval")

View File

@ -47,6 +47,7 @@ class HitTestingApi(Resource):
parser = reqparse.RequestParser()
parser.add_argument("query", type=str, location="json")
parser.add_argument("retrieval_model", type=dict, required=False, location="json")
parser.add_argument("external_retrieval_model", type=dict, required=False, location="json")
args = parser.parse_args()
HitTestingService.hit_testing_args_check(args)
@ -57,6 +58,7 @@ class HitTestingApi(Resource):
query=args["query"],
account=current_user,
retrieval_model=args["retrieval_model"],
external_retrieval_model=args["external_retrieval_model"],
limit=10,
)

View File

@ -14,7 +14,9 @@ class WebsiteCrawlApi(Resource):
@account_initialization_required
def post(self):
parser = reqparse.RequestParser()
parser.add_argument("provider", type=str, choices=["firecrawl"], required=True, nullable=True, location="json")
parser.add_argument(
"provider", type=str, choices=["firecrawl", "jinareader"], required=True, nullable=True, location="json"
)
parser.add_argument("url", type=str, required=True, nullable=True, location="json")
parser.add_argument("options", type=dict, required=True, nullable=True, location="json")
args = parser.parse_args()
@ -33,7 +35,7 @@ class WebsiteCrawlStatusApi(Resource):
@account_initialization_required
def get(self, job_id: str):
parser = reqparse.RequestParser()
parser.add_argument("provider", type=str, choices=["firecrawl"], required=True, location="args")
parser.add_argument("provider", type=str, choices=["firecrawl", "jinareader"], required=True, location="args")
args = parser.parse_args()
# get crawl status
try:

View File

@ -4,7 +4,7 @@ from flask import request
from flask_restful import Resource, reqparse
from configs import dify_config
from libs.helper import StrLen, email, get_remote_ip
from libs.helper import StrLen, email, extract_remote_ip
from libs.password import valid_password
from models.model import DifySetup
from services.account_service import RegisterService, TenantService
@ -46,7 +46,7 @@ class SetupApi(Resource):
# setup
RegisterService.setup(
email=args["email"], name=args["name"], password=args["password"], ip_address=get_remote_ip(request)
email=args["email"], name=args["name"], password=args["password"], ip_address=extract_remote_ip(request)
)
return {"result": "success"}, 201

View File

@ -38,11 +38,52 @@ class VersionApi(Resource):
return result
content = json.loads(response.content)
result["version"] = content["version"]
result["release_date"] = content["releaseDate"]
result["release_notes"] = content["releaseNotes"]
result["can_auto_update"] = content["canAutoUpdate"]
if _has_new_version(latest_version=content["version"], current_version=f"{args.get('current_version')}"):
result["version"] = content["version"]
result["release_date"] = content["releaseDate"]
result["release_notes"] = content["releaseNotes"]
result["can_auto_update"] = content["canAutoUpdate"]
return result
def _has_new_version(*, latest_version: str, current_version: str) -> bool:
def parse_version(version: str) -> tuple:
# Split version into parts and pre-release suffix if any
parts = version.split("-")
version_parts = parts[0].split(".")
pre_release = parts[1] if len(parts) > 1 else None
# Validate version format
if len(version_parts) != 3:
raise ValueError(f"Invalid version format: {version}")
try:
# Convert version parts to integers
major, minor, patch = map(int, version_parts)
return (major, minor, patch, pre_release)
except ValueError:
raise ValueError(f"Invalid version format: {version}")
latest = parse_version(latest_version)
current = parse_version(current_version)
# Compare major, minor, and patch versions
for latest_part, current_part in zip(latest[:3], current[:3]):
if latest_part > current_part:
return True
elif latest_part < current_part:
return False
# If versions are equal, check pre-release suffixes
if latest[3] is None and current[3] is not None:
return True
elif latest[3] is not None and current[3] is None:
return False
elif latest[3] is not None and current[3] is not None:
# Simple string comparison for pre-release versions
return latest[3] > current[3]
return False
api.add_resource(VersionApi, "/version")

View File

@ -126,13 +126,12 @@ class ModelProviderIconApi(Resource):
Get model provider icon
"""
@setup_required
@login_required
@account_initialization_required
def get(self, provider: str, icon_type: str, lang: str):
model_provider_service = ModelProviderService()
icon, mimetype = model_provider_service.get_model_provider_icon(
provider=provider, icon_type=icon_type, lang=lang
provider=provider,
icon_type=icon_type,
lang=lang,
)
return send_file(io.BytesIO(icon), mimetype=mimetype)

View File

@ -72,8 +72,9 @@ class DefaultModelApi(Resource):
provider=model_setting["provider"],
model=model_setting["model"],
)
except Exception:
logging.warning(f"{model_setting['model_type']} save error")
except Exception as ex:
logging.exception(f"{model_setting['model_type']} save error: {ex}")
raise ex
return {"result": "success"}

View File

@ -0,0 +1,7 @@
from libs.exception import BaseHTTPException
class UnsupportedFileTypeError(BaseHTTPException):
error_code = "unsupported_file_type"
description = "File type not allowed."
code = 415

View File

@ -4,7 +4,7 @@ from werkzeug.exceptions import NotFound
import services
from controllers.files import api
from libs.exception import BaseHTTPException
from controllers.files.error import UnsupportedFileTypeError
from services.account_service import TenantService
from services.file_service import FileService
@ -50,9 +50,3 @@ class WorkspaceWebappLogoApi(Resource):
api.add_resource(ImagePreviewApi, "/files/<uuid:file_id>/image-preview")
api.add_resource(WorkspaceWebappLogoApi, "/files/workspaces/<uuid:workspace_id>/webapp-logo")
class UnsupportedFileTypeError(BaseHTTPException):
error_code = "unsupported_file_type"
description = "File type not allowed."
code = 415

View File

@ -3,8 +3,8 @@ from flask_restful import Resource, reqparse
from werkzeug.exceptions import Forbidden, NotFound
from controllers.files import api
from controllers.files.error import UnsupportedFileTypeError
from core.tools.tool_file_manager import ToolFileManager
from libs.exception import BaseHTTPException
class ToolFilePreviewApi(Resource):
@ -43,9 +43,3 @@ class ToolFilePreviewApi(Resource):
api.add_resource(ToolFilePreviewApi, "/files/tools/<uuid:file_id>.<string:extension>")
class UnsupportedFileTypeError(BaseHTTPException):
error_code = "unsupported_file_type"
description = "File type not allowed."
code = 415

View File

@ -4,6 +4,7 @@ from flask_restful import Resource, reqparse
from werkzeug.exceptions import InternalServerError, NotFound
import services
from constants import UUID_NIL
from controllers.service_api import api
from controllers.service_api.app.error import (
AppUnavailableError,
@ -107,6 +108,7 @@ class ChatApi(Resource):
parser.add_argument("conversation_id", type=uuid_value, location="json")
parser.add_argument("retriever_from", type=str, required=False, default="dev", location="json")
parser.add_argument("auto_generate_name", type=bool, required=False, default=True, location="json")
parser.add_argument("parent_message_id", type=uuid_value, required=False, default=UUID_NIL, location="json")
args = parser.parse_args()

View File

@ -28,11 +28,11 @@ class DatasetListApi(DatasetApiResource):
page = request.args.get("page", default=1, type=int)
limit = request.args.get("limit", default=20, type=int)
provider = request.args.get("provider", default="vendor")
# provider = request.args.get("provider", default="vendor")
search = request.args.get("keyword", default=None, type=str)
tag_ids = request.args.getlist("tag_ids")
datasets, total = DatasetService.get_datasets(page, limit, provider, tenant_id, current_user, search, tag_ids)
datasets, total = DatasetService.get_datasets(page, limit, tenant_id, current_user, search, tag_ids)
# check embedding setting
provider_manager = ProviderManager()
configurations = provider_manager.get_configurations(tenant_id=current_user.current_tenant_id)
@ -82,6 +82,26 @@ class DatasetListApi(DatasetApiResource):
required=False,
nullable=False,
)
parser.add_argument(
"external_knowledge_api_id",
type=str,
nullable=True,
required=False,
default="_validate_name",
)
parser.add_argument(
"provider",
type=str,
nullable=True,
required=False,
default="vendor",
)
parser.add_argument(
"external_knowledge_id",
type=str,
nullable=True,
required=False,
)
args = parser.parse_args()
try:
@ -91,6 +111,9 @@ class DatasetListApi(DatasetApiResource):
indexing_technique=args["indexing_technique"],
account=current_user,
permission=args["permission"],
provider=args["provider"],
external_knowledge_api_id=args["external_knowledge_api_id"],
external_knowledge_id=args["external_knowledge_id"],
)
except services.errors.dataset.DatasetNameDuplicateError:
raise DatasetNameDuplicateError()

View File

@ -369,7 +369,7 @@ class CotAgentRunner(BaseAgentRunner, ABC):
return message
def _organize_historic_prompt_messages(
self, current_session_messages: list[PromptMessage] = None
self, current_session_messages: Optional[list[PromptMessage]] = None
) -> list[PromptMessage]:
"""
organize historic prompt messages

View File

@ -27,7 +27,7 @@ class CotChatAgentRunner(CotAgentRunner):
return SystemPromptMessage(content=system_prompt)
def _organize_user_query(self, query, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""

View File

@ -1,4 +1,5 @@
import json
from typing import Optional
from core.agent.cot_agent_runner import CotAgentRunner
from core.model_runtime.entities.message_entities import AssistantPromptMessage, PromptMessage, UserPromptMessage
@ -21,7 +22,7 @@ class CotCompletionAgentRunner(CotAgentRunner):
return system_prompt
def _organize_historic_prompt(self, current_session_messages: list[PromptMessage] = None) -> str:
def _organize_historic_prompt(self, current_session_messages: Optional[list[PromptMessage]] = None) -> str:
"""
Organize historic prompt
"""

View File

@ -2,7 +2,7 @@ import json
import logging
from collections.abc import Generator
from copy import deepcopy
from typing import Any, Union
from typing import Any, Optional, Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
@ -370,7 +370,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
return tool_calls
def _init_system_message(
self, prompt_template: str, prompt_messages: list[PromptMessage] = None
self, prompt_template: str, prompt_messages: Optional[list[PromptMessage]] = None
) -> list[PromptMessage]:
"""
Initialize system message
@ -385,7 +385,7 @@ class FunctionCallAgentRunner(BaseAgentRunner):
return prompt_messages
def _organize_user_query(self, query, prompt_messages: list[PromptMessage] = None) -> list[PromptMessage]:
def _organize_user_query(self, query, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Organize user query
"""

View File

@ -14,7 +14,7 @@ class CotAgentOutputParser:
) -> Generator[Union[str, AgentScratchpadUnit.Action], None, None]:
def parse_action(json_str):
try:
action = json.loads(json_str)
action = json.loads(json_str, strict=False)
action_name = None
action_input = None

View File

@ -113,6 +113,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
# always enable retriever resource in debugger mode
app_config.additional_features.show_retrieve_source = True
workflow_run_id = str(uuid.uuid4())
# init application generate entity
application_generate_entity = AdvancedChatAppGenerateEntity(
task_id=str(uuid.uuid4()),
@ -127,6 +128,7 @@ class AdvancedChatAppGenerator(MessageBasedAppGenerator):
invoke_from=invoke_from,
extras=extras,
trace_manager=trace_manager,
workflow_run_id=workflow_run_id,
)
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)

View File

@ -149,6 +149,9 @@ class AdvancedChatAppRunner(WorkflowBasedAppRunner):
SystemVariableKey.CONVERSATION_ID: self.conversation.id,
SystemVariableKey.USER_ID: user_id,
SystemVariableKey.DIALOGUE_COUNT: conversation_dialogue_count,
SystemVariableKey.APP_ID: app_config.app_id,
SystemVariableKey.WORKFLOW_ID: app_config.workflow_id,
SystemVariableKey.WORKFLOW_RUN_ID: self.application_generate_entity.workflow_run_id,
}
# init variable pool

View File

@ -45,6 +45,7 @@ from core.app.entities.task_entities import (
from core.app.task_pipeline.based_generate_task_pipeline import BasedGenerateTaskPipeline
from core.app.task_pipeline.message_cycle_manage import MessageCycleManage
from core.app.task_pipeline.workflow_cycle_manage import WorkflowCycleManage
from core.model_runtime.entities.llm_entities import LLMUsage
from core.model_runtime.utils.encoders import jsonable_encoder
from core.ops.ops_trace_manager import TraceQueueManager
from core.workflow.enums import SystemVariableKey
@ -55,6 +56,7 @@ from models.account import Account
from models.model import Conversation, EndUser, Message
from models.workflow import (
Workflow,
WorkflowNodeExecution,
WorkflowRunStatus,
)
@ -71,6 +73,7 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
_workflow: Workflow
_user: Union[Account, EndUser]
_workflow_system_variables: dict[SystemVariableKey, Any]
_wip_workflow_node_executions: dict[str, WorkflowNodeExecution]
def __init__(
self,
@ -107,9 +110,14 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
SystemVariableKey.FILES: application_generate_entity.files,
SystemVariableKey.CONVERSATION_ID: conversation.id,
SystemVariableKey.USER_ID: user_id,
SystemVariableKey.DIALOGUE_COUNT: conversation.dialogue_count,
SystemVariableKey.APP_ID: application_generate_entity.app_config.app_id,
SystemVariableKey.WORKFLOW_ID: workflow.id,
SystemVariableKey.WORKFLOW_RUN_ID: application_generate_entity.workflow_run_id,
}
self._task_state = WorkflowTaskState()
self._wip_workflow_node_executions = {}
self._conversation_name_generate_thread = None
@ -231,7 +239,8 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
except Exception as e:
logger.error(e)
break
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
def _process_stream_response(
self,
@ -504,6 +513,10 @@ class AdvancedChatAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCyc
self._message.total_price = usage.total_price
self._message.currency = usage.currency
self._task_state.metadata["usage"] = jsonable_encoder(usage)
else:
self._task_state.metadata["usage"] = jsonable_encoder(LLMUsage.empty_usage())
db.session.commit()
message_was_created.send(

View File

@ -99,6 +99,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
user_id = user.id if isinstance(user, Account) else user.session_id
trace_manager = TraceQueueManager(app_model.id, user_id)
workflow_run_id = str(uuid.uuid4())
# init application generate entity
application_generate_entity = WorkflowAppGenerateEntity(
task_id=str(uuid.uuid4()),
@ -110,6 +111,7 @@ class WorkflowAppGenerator(BaseAppGenerator):
invoke_from=invoke_from,
call_depth=call_depth,
trace_manager=trace_manager,
workflow_run_id=workflow_run_id,
)
contexts.tenant_id.set(application_generate_entity.app_config.tenant_id)

View File

@ -90,6 +90,9 @@ class WorkflowAppRunner(WorkflowBasedAppRunner):
system_inputs = {
SystemVariableKey.FILES: files,
SystemVariableKey.USER_ID: user_id,
SystemVariableKey.APP_ID: app_config.app_id,
SystemVariableKey.WORKFLOW_ID: app_config.workflow_id,
SystemVariableKey.WORKFLOW_RUN_ID: self.application_generate_entity.workflow_run_id,
}
variable_pool = VariablePool(

View File

@ -52,6 +52,7 @@ from models.workflow import (
Workflow,
WorkflowAppLog,
WorkflowAppLogCreatedFrom,
WorkflowNodeExecution,
WorkflowRun,
WorkflowRunStatus,
)
@ -69,6 +70,7 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
_task_state: WorkflowTaskState
_application_generate_entity: WorkflowAppGenerateEntity
_workflow_system_variables: dict[SystemVariableKey, Any]
_wip_workflow_node_executions: dict[str, WorkflowNodeExecution]
def __init__(
self,
@ -97,9 +99,13 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
self._workflow_system_variables = {
SystemVariableKey.FILES: application_generate_entity.files,
SystemVariableKey.USER_ID: user_id,
SystemVariableKey.APP_ID: application_generate_entity.app_config.app_id,
SystemVariableKey.WORKFLOW_ID: workflow.id,
SystemVariableKey.WORKFLOW_RUN_ID: application_generate_entity.workflow_run_id,
}
self._task_state = WorkflowTaskState()
self._wip_workflow_node_executions = {}
def process(self) -> Union[WorkflowAppBlockingResponse, Generator[WorkflowAppStreamResponse, None, None]]:
"""
@ -212,7 +218,8 @@ class WorkflowAppGenerateTaskPipeline(BasedGenerateTaskPipeline, WorkflowCycleMa
except Exception as e:
logger.error(e)
break
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
if tts_publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
def _process_stream_response(
self,

View File

@ -152,6 +152,7 @@ class AdvancedChatAppGenerateEntity(AppGenerateEntity):
conversation_id: Optional[str] = None
parent_message_id: Optional[str] = None
workflow_run_id: Optional[str] = None
query: str
class SingleIterationRunEntity(BaseModel):
@ -172,6 +173,7 @@ class WorkflowAppGenerateEntity(AppGenerateEntity):
# app config
app_config: WorkflowUIBasedAppConfig
workflow_run_id: Optional[str] = None
class SingleIterationRunEntity(BaseModel):
"""

View File

@ -1,2 +1,2 @@
class VariableError(Exception):
class VariableError(ValueError):
pass

View File

@ -248,7 +248,8 @@ class EasyUIBasedGenerateTaskPipeline(BasedGenerateTaskPipeline, MessageCycleMan
else:
start_listener_time = time.time()
yield MessageAudioStreamResponse(audio=audio.audio, task_id=task_id)
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
if publisher:
yield MessageAudioEndStreamResponse(audio="", task_id=task_id)
def _process_stream_response(
self, publisher: AppGeneratorTTSPublisher, trace_manager: Optional[TraceQueueManager] = None

View File

@ -1,8 +1,10 @@
import logging
from threading import Thread
from typing import Optional, Union
from flask import Flask, current_app
from configs import dify_config
from core.app.entities.app_invoke_entities import (
AdvancedChatAppGenerateEntity,
AgentChatAppGenerateEntity,
@ -82,7 +84,9 @@ class MessageCycleManage:
try:
name = LLMGenerator.generate_conversation_name(app_model.tenant_id, query)
conversation.name = name
except:
except Exception as e:
if dify_config.DEBUG:
logging.exception(f"generate conversation name failed: {e}")
pass
db.session.merge(conversation)

View File

@ -57,6 +57,7 @@ class WorkflowCycleManage:
_user: Union[Account, EndUser]
_task_state: WorkflowTaskState
_workflow_system_variables: dict[SystemVariableKey, Any]
_wip_workflow_node_executions: dict[str, WorkflowNodeExecution]
def _handle_workflow_run_start(self) -> WorkflowRun:
max_sequence = (
@ -85,6 +86,9 @@ class WorkflowCycleManage:
# init workflow run
workflow_run = WorkflowRun()
workflow_run_id = self._workflow_system_variables[SystemVariableKey.WORKFLOW_RUN_ID]
if workflow_run_id:
workflow_run.id = workflow_run_id
workflow_run.tenant_id = self._workflow.tenant_id
workflow_run.app_id = self._workflow.app_id
workflow_run.sequence_number = new_sequence_number
@ -248,6 +252,8 @@ class WorkflowCycleManage:
db.session.refresh(workflow_node_execution)
db.session.close()
self._wip_workflow_node_executions[workflow_node_execution.node_execution_id] = workflow_node_execution
return workflow_node_execution
def _handle_workflow_node_execution_success(self, event: QueueNodeSucceededEvent) -> WorkflowNodeExecution:
@ -260,20 +266,36 @@ class WorkflowCycleManage:
inputs = WorkflowEntry.handle_special_values(event.inputs)
outputs = WorkflowEntry.handle_special_values(event.outputs)
execution_metadata = (
json.dumps(jsonable_encoder(event.execution_metadata)) if event.execution_metadata else None
)
finished_at = datetime.now(timezone.utc).replace(tzinfo=None)
elapsed_time = (finished_at - event.start_at).total_seconds()
db.session.query(WorkflowNodeExecution).filter(WorkflowNodeExecution.id == workflow_node_execution.id).update(
{
WorkflowNodeExecution.status: WorkflowNodeExecutionStatus.SUCCEEDED.value,
WorkflowNodeExecution.inputs: json.dumps(inputs) if inputs else None,
WorkflowNodeExecution.process_data: json.dumps(event.process_data) if event.process_data else None,
WorkflowNodeExecution.outputs: json.dumps(outputs) if outputs else None,
WorkflowNodeExecution.execution_metadata: execution_metadata,
WorkflowNodeExecution.finished_at: finished_at,
WorkflowNodeExecution.elapsed_time: elapsed_time,
}
)
db.session.commit()
db.session.close()
workflow_node_execution.status = WorkflowNodeExecutionStatus.SUCCEEDED.value
workflow_node_execution.inputs = json.dumps(inputs) if inputs else None
workflow_node_execution.process_data = json.dumps(event.process_data) if event.process_data else None
workflow_node_execution.outputs = json.dumps(outputs) if outputs else None
workflow_node_execution.execution_metadata = (
json.dumps(jsonable_encoder(event.execution_metadata)) if event.execution_metadata else None
)
workflow_node_execution.finished_at = datetime.now(timezone.utc).replace(tzinfo=None)
workflow_node_execution.elapsed_time = (workflow_node_execution.finished_at - event.start_at).total_seconds()
workflow_node_execution.execution_metadata = execution_metadata
workflow_node_execution.finished_at = finished_at
workflow_node_execution.elapsed_time = elapsed_time
db.session.commit()
db.session.refresh(workflow_node_execution)
db.session.close()
self._wip_workflow_node_executions.pop(workflow_node_execution.node_execution_id)
return workflow_node_execution
@ -287,18 +309,33 @@ class WorkflowCycleManage:
inputs = WorkflowEntry.handle_special_values(event.inputs)
outputs = WorkflowEntry.handle_special_values(event.outputs)
finished_at = datetime.now(timezone.utc).replace(tzinfo=None)
elapsed_time = (finished_at - event.start_at).total_seconds()
db.session.query(WorkflowNodeExecution).filter(WorkflowNodeExecution.id == workflow_node_execution.id).update(
{
WorkflowNodeExecution.status: WorkflowNodeExecutionStatus.FAILED.value,
WorkflowNodeExecution.error: event.error,
WorkflowNodeExecution.inputs: json.dumps(inputs) if inputs else None,
WorkflowNodeExecution.process_data: json.dumps(event.process_data) if event.process_data else None,
WorkflowNodeExecution.outputs: json.dumps(outputs) if outputs else None,
WorkflowNodeExecution.finished_at: finished_at,
WorkflowNodeExecution.elapsed_time: elapsed_time,
}
)
db.session.commit()
db.session.close()
workflow_node_execution.status = WorkflowNodeExecutionStatus.FAILED.value
workflow_node_execution.error = event.error
workflow_node_execution.finished_at = datetime.now(timezone.utc).replace(tzinfo=None)
workflow_node_execution.inputs = json.dumps(inputs) if inputs else None
workflow_node_execution.process_data = json.dumps(event.process_data) if event.process_data else None
workflow_node_execution.outputs = json.dumps(outputs) if outputs else None
workflow_node_execution.elapsed_time = (workflow_node_execution.finished_at - event.start_at).total_seconds()
workflow_node_execution.finished_at = finished_at
workflow_node_execution.elapsed_time = elapsed_time
db.session.commit()
db.session.refresh(workflow_node_execution)
db.session.close()
self._wip_workflow_node_executions.pop(workflow_node_execution.node_execution_id)
return workflow_node_execution
@ -675,17 +712,7 @@ class WorkflowCycleManage:
:param node_execution_id: workflow node execution id
:return:
"""
workflow_node_execution = (
db.session.query(WorkflowNodeExecution)
.filter(
WorkflowNodeExecution.tenant_id == self._application_generate_entity.app_config.tenant_id,
WorkflowNodeExecution.app_id == self._application_generate_entity.app_config.app_id,
WorkflowNodeExecution.workflow_id == self._workflow.id,
WorkflowNodeExecution.triggered_from == WorkflowNodeExecutionTriggeredFrom.WORKFLOW_RUN.value,
WorkflowNodeExecution.node_execution_id == node_execution_id,
)
.first()
)
workflow_node_execution = self._wip_workflow_node_executions.get(node_execution_id)
if not workflow_node_execution:
raise Exception(f"Workflow node execution not found: {node_execution_id}")

View File

@ -1,9 +1,9 @@
import os
from collections.abc import Mapping, Sequence
from typing import Any, Optional, TextIO, Union
from pydantic import BaseModel
from configs import dify_config
from core.ops.entities.trace_entity import TraceTaskName
from core.ops.ops_trace_manager import TraceQueueManager, TraceTask
from core.tools.entities.tool_entities import ToolInvokeMessage
@ -50,7 +50,8 @@ class DifyAgentCallbackHandler(BaseModel):
tool_inputs: Mapping[str, Any],
) -> None:
"""Do nothing."""
print_text("\n[on_tool_start] ToolCall:" + tool_name + "\n" + str(tool_inputs) + "\n", color=self.color)
if dify_config.DEBUG:
print_text("\n[on_tool_start] ToolCall:" + tool_name + "\n" + str(tool_inputs) + "\n", color=self.color)
def on_tool_end(
self,
@ -62,11 +63,12 @@ class DifyAgentCallbackHandler(BaseModel):
trace_manager: Optional[TraceQueueManager] = None,
) -> None:
"""If not the final action, print out observation."""
print_text("\n[on_tool_end]\n", color=self.color)
print_text("Tool: " + tool_name + "\n", color=self.color)
print_text("Inputs: " + str(tool_inputs) + "\n", color=self.color)
print_text("Outputs: " + str(tool_outputs)[:1000] + "\n", color=self.color)
print_text("\n")
if dify_config.DEBUG:
print_text("\n[on_tool_end]\n", color=self.color)
print_text("Tool: " + tool_name + "\n", color=self.color)
print_text("Inputs: " + str(tool_inputs) + "\n", color=self.color)
print_text("Outputs: " + str(tool_outputs)[:1000] + "\n", color=self.color)
print_text("\n")
if trace_manager:
trace_manager.add_trace_task(
@ -82,30 +84,33 @@ class DifyAgentCallbackHandler(BaseModel):
def on_tool_error(self, error: Union[Exception, KeyboardInterrupt], **kwargs: Any) -> None:
"""Do nothing."""
print_text("\n[on_tool_error] Error: " + str(error) + "\n", color="red")
if dify_config.DEBUG:
print_text("\n[on_tool_error] Error: " + str(error) + "\n", color="red")
def on_agent_start(self, thought: str) -> None:
"""Run on agent start."""
if thought:
print_text(
"\n[on_agent_start] \nCurrent Loop: " + str(self.current_loop) + "\nThought: " + thought + "\n",
color=self.color,
)
else:
print_text("\n[on_agent_start] \nCurrent Loop: " + str(self.current_loop) + "\n", color=self.color)
if dify_config.DEBUG:
if thought:
print_text(
"\n[on_agent_start] \nCurrent Loop: " + str(self.current_loop) + "\nThought: " + thought + "\n",
color=self.color,
)
else:
print_text("\n[on_agent_start] \nCurrent Loop: " + str(self.current_loop) + "\n", color=self.color)
def on_agent_finish(self, color: Optional[str] = None, **kwargs: Any) -> None:
"""Run on agent end."""
print_text("\n[on_agent_finish]\n Loop: " + str(self.current_loop) + "\n", color=self.color)
if dify_config.DEBUG:
print_text("\n[on_agent_finish]\n Loop: " + str(self.current_loop) + "\n", color=self.color)
self.current_loop += 1
@property
def ignore_agent(self) -> bool:
"""Whether to ignore agent callbacks."""
return not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != "true"
return not dify_config.DEBUG
@property
def ignore_chat_model(self) -> bool:
"""Whether to ignore chat model callbacks."""
return not os.environ.get("DEBUG") or os.environ.get("DEBUG").lower() != "true"
return not dify_config.DEBUG

View File

@ -44,7 +44,6 @@ class DatasetIndexToolCallbackHandler:
DocumentSegment.index_node_id == document.metadata["doc_id"]
)
# if 'dataset_id' in document.metadata:
if "dataset_id" in document.metadata:
query = query.filter(DocumentSegment.dataset_id == document.metadata["dataset_id"])
@ -59,7 +58,7 @@ class DatasetIndexToolCallbackHandler:
for item in resource:
dataset_retriever_resource = DatasetRetrieverResource(
message_id=self._message_id,
position=item.get("position"),
position=item.get("position") or 0,
dataset_id=item.get("dataset_id"),
dataset_name=item.get("dataset_name"),
document_id=item.get("document_id"),

View File

@ -5,6 +5,7 @@ from typing import Optional, cast
import numpy as np
from sqlalchemy.exc import IntegrityError
from configs import dify_config
from core.embedding.embedding_constant import EmbeddingInputType
from core.model_manager import ModelInstance
from core.model_runtime.entities.model_entities import ModelPropertyKey
@ -110,6 +111,8 @@ class CacheEmbedding(Embeddings):
embedding_results = embedding_result.embeddings[0]
embedding_results = (embedding_results / np.linalg.norm(embedding_results)).tolist()
except Exception as ex:
if dify_config.DEBUG:
logging.exception(f"Failed to embed query text: {ex}")
raise ex
try:
@ -122,6 +125,8 @@ class CacheEmbedding(Embeddings):
encoded_str = encoded_vector.decode("utf-8")
redis_client.setex(embedding_cache_key, 600, encoded_str)
except Exception as ex:
logging.exception("Failed to add embedding to redis %s", ex)
if dify_config.DEBUG:
logging.exception("Failed to add embedding to redis %s", ex)
raise ex
return embedding_results

View File

@ -119,7 +119,7 @@ class ProviderConfiguration(BaseModel):
credentials = model_configuration.credentials
break
if self.custom_configuration.provider:
if not credentials and self.custom_configuration.provider:
credentials = self.custom_configuration.provider.credentials
return credentials

View File

@ -198,16 +198,34 @@ class MessageFileParser:
if "amazonaws.com" not in parsed_url.netloc:
return False
query_params = parse_qs(parsed_url.query)
required_params = ["Signature", "Expires"]
for param in required_params:
if param not in query_params:
def check_presign_v2(query_params):
required_params = ["Signature", "Expires"]
for param in required_params:
if param not in query_params:
return False
if not query_params["Expires"][0].isdigit():
return False
if not query_params["Expires"][0].isdigit():
return False
signature = query_params["Signature"][0]
if not re.match(r"^[A-Za-z0-9+/]+={0,2}$", signature):
return False
return True
signature = query_params["Signature"][0]
if not re.match(r"^[A-Za-z0-9+/]+={0,2}$", signature):
return False
return True
def check_presign_v4(query_params):
required_params = ["X-Amz-Signature", "X-Amz-Expires"]
for param in required_params:
if param not in query_params:
return False
if not query_params["X-Amz-Expires"][0].isdigit():
return False
signature = query_params["X-Amz-Signature"][0]
if not re.match(r"^[A-Za-z0-9+/]+={0,2}$", signature):
return False
return True
return check_presign_v4(query_params) or check_presign_v2(query_params)
except Exception:
return False

View File

@ -211,9 +211,9 @@ class IndexingRunner:
tenant_id: str,
extract_settings: list[ExtractSetting],
tmp_processing_rule: dict,
doc_form: str = None,
doc_form: Optional[str] = None,
doc_language: str = "English",
dataset_id: str = None,
dataset_id: Optional[str] = None,
indexing_technique: str = "economy",
) -> dict:
"""

View File

@ -58,7 +58,11 @@ class TokenBufferMemory:
# instead of all messages from the conversation, we only need to extract messages
# that belong to the thread of last message
thread_messages = extract_thread_messages(messages)
thread_messages.pop(0)
# for newly created message, its answer is temporarily empty, we don't need to add it to memory
if thread_messages and not thread_messages[0].answer:
thread_messages.pop(0)
messages = list(reversed(thread_messages))
message_file_parser = MessageFileParser(tenant_id=app_record.tenant_id, app_id=app_record.id)

View File

@ -1,3 +1,4 @@
from abc import ABC, abstractmethod
from typing import Optional
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk
@ -13,7 +14,7 @@ _TEXT_COLOR_MAPPING = {
}
class Callback:
class Callback(ABC):
"""
Base class for callbacks.
Only for LLM.
@ -21,6 +22,7 @@ class Callback:
raise_error: bool = False
@abstractmethod
def on_before_invoke(
self,
llm_instance: AIModel,
@ -48,6 +50,7 @@ class Callback:
"""
raise NotImplementedError()
@abstractmethod
def on_new_chunk(
self,
llm_instance: AIModel,
@ -77,6 +80,7 @@ class Callback:
"""
raise NotImplementedError()
@abstractmethod
def on_after_invoke(
self,
llm_instance: AIModel,
@ -106,6 +110,7 @@ class Callback:
"""
raise NotImplementedError()
@abstractmethod
def on_invoke_error(
self,
llm_instance: AIModel,

View File

@ -0,0 +1,310 @@
## Custom Integration of Pre-defined Models
### Introduction
After completing the vendors integration, the next step is to connect the vendor's models. To illustrate the entire connection process, we will use Xinference as an example to demonstrate a complete vendor integration.
It is important to note that for custom models, each model connection requires a complete vendor credential.
Unlike pre-defined models, a custom vendor integration always includes the following two parameters, which do not need to be defined in the vendor YAML file.
![](images/index/image-3.png)
As mentioned earlier, vendors do not need to implement validate_provider_credential. The runtime will automatically call the corresponding model layer's validate_credentials to validate the credentials based on the model type and name selected by the user.
### Writing the Vendor YAML
First, we need to identify the types of models supported by the vendor we are integrating.
Currently supported model types are as follows:
- `llm` Text Generation Models
- `text_embedding` Text Embedding Models
- `rerank` Rerank Models
- `speech2text` Speech-to-Text
- `tts` Text-to-Speech
- `moderation` Moderation
Xinference supports LLM, Text Embedding, and Rerank. So we will start by writing xinference.yaml.
```yaml
provider: xinference #Define the vendor identifier
label: # Vendor display name, supports both en_US (English) and zh_Hans (Simplified Chinese). If zh_Hans is not set, it will use en_US by default.
en_US: Xorbits Inference
icon_small: # Small icon, refer to other vendors' icons stored in the _assets directory within the vendor implementation directory; follows the same language policy as the label
en_US: icon_s_en.svg
icon_large: # Large icon
en_US: icon_l_en.svg
help: # Help information
title:
en_US: How to deploy Xinference
zh_Hans: 如何部署 Xinference
url:
en_US: https://github.com/xorbitsai/inference
supported_model_types: # Supported model types. Xinference supports LLM, Text Embedding, and Rerank
- llm
- text-embedding
- rerank
configurate_methods: # Since Xinference is a locally deployed vendor with no predefined models, users need to deploy whatever models they need according to Xinference documentation. Thus, it only supports custom models.
- customizable-model
provider_credential_schema:
credential_form_schemas:
```
Then, we need to determine what credentials are required to define a model in Xinference.
- Since it supports three different types of models, we need to specify the model_type to denote the model type. Here is how we can define it:
```yaml
provider_credential_schema:
credential_form_schemas:
- variable: model_type
type: select
label:
en_US: Model type
zh_Hans: 模型类型
required: true
options:
- value: text-generation
label:
en_US: Language Model
zh_Hans: 语言模型
- value: embeddings
label:
en_US: Text Embedding
- value: reranking
label:
en_US: Rerank
```
- Next, each model has its own model_name, so we need to define that here:
```yaml
- variable: model_name
type: text-input
label:
en_US: Model name
zh_Hans: 模型名称
required: true
placeholder:
zh_Hans: 填写模型名称
en_US: Input model name
```
- Specify the Xinference local deployment address:
```yaml
- variable: server_url
label:
zh_Hans: 服务器URL
en_US: Server url
type: text-input
required: true
placeholder:
zh_Hans: 在此输入Xinference的服务器地址如 https://example.com/xxx
en_US: Enter the url of your Xinference, for example https://example.com/xxx
```
- Each model has a unique model_uid, so we also need to define that here:
```yaml
- variable: model_uid
label:
zh_Hans: 模型UID
en_US: Model uid
type: text-input
required: true
placeholder:
zh_Hans: 在此输入您的Model UID
en_US: Enter the model uid
```
Now, we have completed the basic definition of the vendor.
### Writing the Model Code
Next, let's take the `llm` type as an example and write `xinference.llm.llm.py`.
In `llm.py`, create a Xinference LLM class, we name it `XinferenceAILargeLanguageModel` (this can be arbitrary), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
- LLM Invocation
Implement the core method for LLM invocation, supporting both stream and synchronous responses.
```python
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) \
-> Union[LLMResult, Generator]:
"""
Invoke large language model
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool usage
:param stop: stop words
:param stream: is the response a stream
:param user: unique user id
:return: full response or stream response chunk generator result
"""
```
When implementing, ensure to use two functions to return data separately for synchronous and stream responses. This is important because Python treats functions containing the `yield` keyword as generator functions, mandating them to return `Generator` types. Heres an example (note that the example uses simplified parameters; in real implementation, use the parameter list as defined above):
```python
def _invoke(self, stream: bool, **kwargs) \
-> Union[LLMResult, Generator]:
if stream:
return self._handle_stream_response(**kwargs)
return self._handle_sync_response(**kwargs)
def _handle_stream_response(self, **kwargs) -> Generator:
for chunk in response:
yield chunk
def _handle_sync_response(self, **kwargs) -> LLMResult:
return LLMResult(**response)
```
- Pre-compute Input Tokens
If the model does not provide an interface for pre-computing tokens, you can return 0 directly.
```python
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],tools: Optional[list[PromptMessageTool]] = None) -> int:
"""
Get number of tokens for given prompt messages
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param tools: tools for tool usage
:return: token count
"""
```
Sometimes, you might not want to return 0 directly. In such cases, you can use `self._get_num_tokens_by_gpt2(text: str)` to get pre-computed tokens. This method is provided by the `AIModel` base class, and it uses GPT2's Tokenizer for calculation. However, it should be noted that this is only a substitute and may not be fully accurate.
- Model Credentials Validation
Similar to vendor credentials validation, this method validates individual model credentials.
```python
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return: None
"""
```
- Model Parameter Schema
Unlike custom types, since the YAML file does not define which parameters a model supports, we need to dynamically generate the model parameter schema.
For instance, Xinference supports `max_tokens`, `temperature`, and `top_p` parameters.
However, some vendors may support different parameters for different models. For example, the `OpenLLM` vendor supports `top_k`, but not all models provided by this vendor support `top_k`. Let's say model A supports `top_k` but model B does not. In such cases, we need to dynamically generate the model parameter schema, as illustrated below:
```python
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
"""
used to define customizable model schema
"""
rules = [
ParameterRule(
name='temperature', type=ParameterType.FLOAT,
use_template='temperature',
label=I18nObject(
zh_Hans='温度', en_US='Temperature'
)
),
ParameterRule(
name='top_p', type=ParameterType.FLOAT,
use_template='top_p',
label=I18nObject(
zh_Hans='Top P', en_US='Top P'
)
),
ParameterRule(
name='max_tokens', type=ParameterType.INT,
use_template='max_tokens',
min=1,
default=512,
label=I18nObject(
zh_Hans='最大生成长度', en_US='Max Tokens'
)
)
]
# if model is A, add top_k to rules
if model == 'A':
rules.append(
ParameterRule(
name='top_k', type=ParameterType.INT,
use_template='top_k',
min=1,
default=50,
label=I18nObject(
zh_Hans='Top K', en_US='Top K'
)
)
)
"""
some NOT IMPORTANT code here
"""
entity = AIModelEntity(
model=model,
label=I18nObject(
en_US=model
),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=model_type,
model_properties={
ModelPropertyKey.MODE: ModelType.LLM,
},
parameter_rules=rules
)
return entity
```
- Exception Error Mapping
When a model invocation error occurs, it should be mapped to the runtime's specified `InvokeError` type, enabling Dify to handle different errors appropriately.
Runtime Errors:
- `InvokeConnectionError` Connection error during invocation
- `InvokeServerUnavailableError` Service provider unavailable
- `InvokeRateLimitError` Rate limit reached
- `InvokeAuthorizationError` Authorization failure
- `InvokeBadRequestError` Invalid request parameters
```python
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
The key is the error type thrown to the caller
The value is the error type thrown by the model,
which needs to be converted into a unified error type for the caller.
:return: Invoke error mapping
"""
```
For interface method details, see: [Interfaces](./interfaces.md). For specific implementations, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).

Binary file not shown.

After

Width:  |  Height:  |  Size: 230 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 205 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 262 KiB

View File

@ -0,0 +1,173 @@
## Predefined Model Integration
After completing the vendor integration, the next step is to integrate the models from the vendor.
First, we need to determine the type of model to be integrated and create the corresponding model type `module` under the respective vendor's directory.
Currently supported model types are:
- `llm` Text Generation Model
- `text_embedding` Text Embedding Model
- `rerank` Rerank Model
- `speech2text` Speech-to-Text
- `tts` Text-to-Speech
- `moderation` Moderation
Continuing with `Anthropic` as an example, `Anthropic` only supports LLM, so create a `module` named `llm` under `model_providers.anthropic`.
For predefined models, we first need to create a YAML file named after the model under the `llm` `module`, such as `claude-2.1.yaml`.
### Prepare Model YAML
```yaml
model: claude-2.1 # Model identifier
# Display name of the model, which can be set to en_US English or zh_Hans Chinese. If zh_Hans is not set, it will default to en_US.
# This can also be omitted, in which case the model identifier will be used as the label
label:
en_US: claude-2.1
model_type: llm # Model type, claude-2.1 is an LLM
features: # Supported features, agent-thought supports Agent reasoning, vision supports image understanding
- agent-thought
model_properties: # Model properties
mode: chat # LLM mode, complete for text completion models, chat for conversation models
context_size: 200000 # Maximum context size
parameter_rules: # Parameter rules for the model call; only LLM requires this
- name: temperature # Parameter variable name
# Five default configuration templates are provided: temperature/top_p/max_tokens/presence_penalty/frequency_penalty
# The template variable name can be set directly in use_template, which will use the default configuration in entities.defaults.PARAMETER_RULE_TEMPLATE
# Additional configuration parameters will override the default configuration if set
use_template: temperature
- name: top_p
use_template: top_p
- name: top_k
label: # Display name of the parameter
zh_Hans: 取样数量
en_US: Top k
type: int # Parameter type, supports float/int/string/boolean
help: # Help information, describing the parameter's function
zh_Hans: 仅从每个后续标记的前 K 个选项中采样。
en_US: Only sample from the top K options for each subsequent token.
required: false # Whether the parameter is mandatory; can be omitted
- name: max_tokens_to_sample
use_template: max_tokens
default: 4096 # Default value of the parameter
min: 1 # Minimum value of the parameter, applicable to float/int only
max: 4096 # Maximum value of the parameter, applicable to float/int only
pricing: # Pricing information
input: '8.00' # Input unit price, i.e., prompt price
output: '24.00' # Output unit price, i.e., response content price
unit: '0.000001' # Price unit, meaning the above prices are per 100K
currency: USD # Price currency
```
It is recommended to prepare all model configurations before starting the implementation of the model code.
You can also refer to the YAML configuration information under the corresponding model type directories of other vendors in the `model_providers` directory. For the complete YAML rules, refer to: [Schema](schema.md#aimodelentity).
### Implement the Model Call Code
Next, create a Python file named `llm.py` under the `llm` `module` to write the implementation code.
Create an Anthropic LLM class named `AnthropicLargeLanguageModel` (or any other name), inheriting from the `__base.large_language_model.LargeLanguageModel` base class, and implement the following methods:
- LLM Call
Implement the core method for calling the LLM, supporting both streaming and synchronous responses.
```python
def _invoke(self, model: str, credentials: dict,
prompt_messages: list[PromptMessage], model_parameters: dict,
tools: Optional[list[PromptMessageTool]] = None, stop: Optional[list[str]] = None,
stream: bool = True, user: Optional[str] = None) \
-> Union[LLMResult, Generator]:
"""
Invoke large language model
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param model_parameters: model parameters
:param tools: tools for tool calling
:param stop: stop words
:param stream: is stream response
:param user: unique user id
:return: full response or stream response chunk generator result
"""
```
Ensure to use two functions for returning data, one for synchronous returns and the other for streaming returns, because Python identifies functions containing the `yield` keyword as generator functions, fixing the return type to `Generator`. Thus, synchronous and streaming returns need to be implemented separately, as shown below (note that the example uses simplified parameters, for actual implementation follow the above parameter list):
```python
def _invoke(self, stream: bool, **kwargs) \
-> Union[LLMResult, Generator]:
if stream:
return self._handle_stream_response(**kwargs)
return self._handle_sync_response(**kwargs)
def _handle_stream_response(self, **kwargs) -> Generator:
for chunk in response:
yield chunk
def _handle_sync_response(self, **kwargs) -> LLMResult:
return LLMResult(**response)
```
- Pre-compute Input Tokens
If the model does not provide an interface to precompute tokens, return 0 directly.
```python
def get_num_tokens(self, model: str, credentials: dict, prompt_messages: list[PromptMessage],
tools: Optional[list[PromptMessageTool]] = None) -> int:
"""
Get number of tokens for given prompt messages
:param model: model name
:param credentials: model credentials
:param prompt_messages: prompt messages
:param tools: tools for tool calling
:return:
"""
```
- Validate Model Credentials
Similar to vendor credential validation, but specific to a single model.
```python
def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials
:param model: model name
:param credentials: model credentials
:return:
"""
```
- Map Invoke Errors
When a model call fails, map it to a specific `InvokeError` type as required by Runtime, allowing Dify to handle different errors accordingly.
Runtime Errors:
- `InvokeConnectionError` Connection error
- `InvokeServerUnavailableError` Service provider unavailable
- `InvokeRateLimitError` Rate limit reached
- `InvokeAuthorizationError` Authorization failed
- `InvokeBadRequestError` Parameter error
```python
@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
The key is the error type thrown to the caller
The value is the error type thrown by the model,
which needs to be converted into a unified error type for the caller.
:return: Invoke error mapping
"""
```
For interface method explanations, see: [Interfaces](./interfaces.md). For detailed implementation, refer to: [llm.py](https://github.com/langgenius/dify-runtime/blob/main/lib/model_providers/anthropic/llm/llm.py).

View File

@ -58,7 +58,7 @@ provider_credential_schema: # Provider credential rules, as Anthropic only supp
en_US: Enter your API URL
```
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#Provider).
You can also refer to the YAML configuration information under other provider directories in `model_providers`. The complete YAML rules are available at: [Schema](schema.md#provider).
### Implementing Provider Code

View File

@ -117,7 +117,7 @@ model_credential_schema:
en_US: Enter your API Base
```
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#Provider)。
也可以参考 `model_providers` 目录下其他供应商目录下的 YAML 配置信息,完整的 YAML 规则见:[Schema](schema.md#provider)。
#### 实现供应商代码

View File

@ -94,7 +94,7 @@ class LargeLanguageModel(AIModel):
)
try:
if "response_format" in model_parameters:
if "response_format" in model_parameters and model_parameters["response_format"] in {"JSON", "XML"}:
result = self._code_block_mode_wrapper(
model=model,
credentials=credentials,

View File

@ -1,7 +1,7 @@
import logging
import re
from abc import abstractmethod
from typing import Optional
from typing import Any, Optional
from pydantic import ConfigDict
@ -88,7 +88,7 @@ class TTSModel(AIModel):
else:
return [{"name": d["name"], "value": d["mode"]} for d in voices]
def _get_model_default_voice(self, model: str, credentials: dict) -> any:
def _get_model_default_voice(self, model: str, credentials: dict) -> Any:
"""
Get voice for given tts model

View File

@ -40,3 +40,4 @@
- fireworks
- mixedbread
- nomic
- voyage

View File

@ -169,7 +169,7 @@ class AnthropicLargeLanguageModel(LargeLanguageModel):
stop: Optional[list[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: list[Callback] = None,
callbacks: Optional[list[Callback]] = None,
) -> Union[LLMResult, Generator]:
"""
Code block mode wrapper for invoking large language model

View File

@ -1081,8 +1081,81 @@ LLM_BASE_MODELS = [
),
),
),
AzureBaseModel(
base_model_name="o1-preview",
entity=AIModelEntity(
model="fake-deployment-name",
label=I18nObject(
en_US="fake-deployment-name-label",
),
model_type=ModelType.LLM,
features=[
ModelFeature.AGENT_THOUGHT,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.MODE: LLMMode.CHAT.value,
ModelPropertyKey.CONTEXT_SIZE: 128000,
},
parameter_rules=[
ParameterRule(
name="response_format",
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),
type="string",
help=I18nObject(
zh_Hans="指定模型必须输出的格式", en_US="specifying the format that the model must output"
),
required=False,
options=["text", "json_object"],
),
_get_max_tokens(default=512, min_val=1, max_val=32768),
],
pricing=PriceConfig(
input=15.00,
output=60.00,
unit=0.000001,
currency="USD",
),
),
),
AzureBaseModel(
base_model_name="o1-mini",
entity=AIModelEntity(
model="fake-deployment-name",
label=I18nObject(
en_US="fake-deployment-name-label",
),
model_type=ModelType.LLM,
features=[
ModelFeature.AGENT_THOUGHT,
],
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={
ModelPropertyKey.MODE: LLMMode.CHAT.value,
ModelPropertyKey.CONTEXT_SIZE: 128000,
},
parameter_rules=[
ParameterRule(
name="response_format",
label=I18nObject(zh_Hans="回复格式", en_US="response_format"),
type="string",
help=I18nObject(
zh_Hans="指定模型必须输出的格式", en_US="specifying the format that the model must output"
),
required=False,
options=["text", "json_object"],
),
_get_max_tokens(default=512, min_val=1, max_val=65536),
],
pricing=PriceConfig(
input=3.00,
output=12.00,
unit=0.000001,
currency="USD",
),
),
),
]
EMBEDDING_BASE_MODELS = [
AzureBaseModel(
base_model_name="text-embedding-ada-002",

View File

@ -53,6 +53,9 @@ model_credential_schema:
type: select
required: true
options:
- label:
en_US: 2024-09-01-preview
value: 2024-09-01-preview
- label:
en_US: 2024-08-01-preview
value: 2024-08-01-preview
@ -120,6 +123,18 @@ model_credential_schema:
show_on:
- variable: __model_type
value: llm
- label:
en_US: o1-mini
value: o1-mini
show_on:
- variable: __model_type
value: llm
- label:
en_US: o1-preview
value: o1-preview
show_on:
- variable: __model_type
value: llm
- label:
en_US: gpt-4o-mini
value: gpt-4o-mini

View File

@ -312,10 +312,24 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
if user:
extra_model_kwargs["user"] = user
# clear illegal prompt messages
prompt_messages = self._clear_illegal_prompt_messages(model, prompt_messages)
block_as_stream = False
if model.startswith("o1"):
if stream:
block_as_stream = True
stream = False
if "stream_options" in extra_model_kwargs:
del extra_model_kwargs["stream_options"]
if "stop" in extra_model_kwargs:
del extra_model_kwargs["stop"]
# chat model
messages = [self._convert_prompt_message_to_dict(m) for m in prompt_messages]
response = client.chat.completions.create(
messages=messages,
messages=[self._convert_prompt_message_to_dict(m) for m in prompt_messages],
model=model,
stream=stream,
**model_parameters,
@ -325,7 +339,91 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
if stream:
return self._handle_chat_generate_stream_response(model, credentials, response, prompt_messages, tools)
return self._handle_chat_generate_response(model, credentials, response, prompt_messages, tools)
block_result = self._handle_chat_generate_response(model, credentials, response, prompt_messages, tools)
if block_as_stream:
return self._handle_chat_block_as_stream_response(block_result, prompt_messages, stop)
return block_result
def _handle_chat_block_as_stream_response(
self,
block_result: LLMResult,
prompt_messages: list[PromptMessage],
stop: Optional[list[str]] = None,
) -> Generator[LLMResultChunk, None, None]:
"""
Handle llm chat response
:param model: model name
:param credentials: credentials
:param response: response
:param prompt_messages: prompt messages
:param tools: tools for tool calling
:param stop: stop words
:return: llm response chunk generator
"""
text = block_result.message.content
text = cast(str, text)
if stop:
text = self.enforce_stop_tokens(text, stop)
yield LLMResultChunk(
model=block_result.model,
prompt_messages=prompt_messages,
system_fingerprint=block_result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=AssistantPromptMessage(content=text),
finish_reason="stop",
usage=block_result.usage,
),
)
def _clear_illegal_prompt_messages(self, model: str, prompt_messages: list[PromptMessage]) -> list[PromptMessage]:
"""
Clear illegal prompt messages for OpenAI API
:param model: model name
:param prompt_messages: prompt messages
:return: cleaned prompt messages
"""
checklist = ["gpt-4-turbo", "gpt-4-turbo-2024-04-09"]
if model in checklist:
# count how many user messages are there
user_message_count = len([m for m in prompt_messages if isinstance(m, UserPromptMessage)])
if user_message_count > 1:
for prompt_message in prompt_messages:
if isinstance(prompt_message, UserPromptMessage):
if isinstance(prompt_message.content, list):
prompt_message.content = "\n".join(
[
item.data
if item.type == PromptMessageContentType.TEXT
else "[IMAGE]"
if item.type == PromptMessageContentType.IMAGE
else ""
for item in prompt_message.content
]
)
if model.startswith("o1"):
system_message_count = len([m for m in prompt_messages if isinstance(m, SystemPromptMessage)])
if system_message_count > 0:
new_prompt_messages = []
for prompt_message in prompt_messages:
if isinstance(prompt_message, SystemPromptMessage):
prompt_message = UserPromptMessage(
content=prompt_message.content,
name=prompt_message.name,
)
new_prompt_messages.append(prompt_message)
prompt_messages = new_prompt_messages
return prompt_messages
def _handle_chat_generate_response(
self,
@ -560,7 +658,7 @@ class AzureOpenAILargeLanguageModel(_CommonAzureOpenAI, LargeLanguageModel):
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif model.startswith("gpt-35-turbo") or model.startswith("gpt-4"):
elif model.startswith("gpt-35-turbo") or model.startswith("gpt-4") or model.startswith("o1"):
tokens_per_message = 3
tokens_per_name = 1
else:

View File

@ -1,6 +1,6 @@
import concurrent.futures
import copy
from typing import Optional
from typing import Any, Optional
from openai import AzureOpenAI
@ -19,7 +19,7 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
def _invoke(
self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, user: Optional[str] = None
) -> any:
) -> Any:
"""
_invoke text2speech model
@ -56,7 +56,7 @@ class AzureOpenAIText2SpeechModel(_CommonAzureOpenAI, TTSModel):
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str, voice: str) -> any:
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str, voice: str) -> Any:
"""
_tts_invoke_streaming text2speech model
:param model: model name

View File

@ -50,34 +50,62 @@ provider_credential_schema:
label:
en_US: US East (N. Virginia)
zh_Hans: 美国东部 (弗吉尼亚北部)
- value: us-east-2
label:
en_US: US East (Ohio)
zh_Hans: 美国东部 (弗吉尼亚北部)
- value: us-west-2
label:
en_US: US West (Oregon)
zh_Hans: 美国西部 (俄勒冈州)
- value: ap-south-1
label:
en_US: Asia Pacific (Mumbai)
zh_Hans: 亚太地区(孟买)
- value: ap-southeast-1
label:
en_US: Asia Pacific (Singapore)
zh_Hans: 亚太地区 (新加坡)
- value: ap-northeast-1
label:
en_US: Asia Pacific (Tokyo)
zh_Hans: 亚太地区 (东京)
- value: eu-central-1
label:
en_US: Europe (Frankfurt)
zh_Hans: 欧洲 (法兰克福)
- value: eu-west-2
label:
en_US: Eu west London (London)
zh_Hans: 欧洲西部 (伦敦)
- value: us-gov-west-1
label:
en_US: AWS GovCloud (US-West)
zh_Hans: AWS GovCloud (US-West)
- value: ap-southeast-2
label:
en_US: Asia Pacific (Sydney)
zh_Hans: 亚太地区 (悉尼)
- value: ap-northeast-1
label:
en_US: Asia Pacific (Tokyo)
zh_Hans: 亚太地区 (东京)
- value: ap-northeast-2
label:
en_US: Asia Pacific (Seoul)
zh_Hans: 亚太地区(首尔)
- value: ca-central-1
label:
en_US: Canada (Central)
zh_Hans: 加拿大(中部)
- value: eu-central-1
label:
en_US: Europe (Frankfurt)
zh_Hans: 欧洲 (法兰克福)
- value: eu-west-1
label:
en_US: Europe (Ireland)
zh_Hans: 欧洲(爱尔兰)
- value: eu-west-2
label:
en_US: Europe (London)
zh_Hans: 欧洲西部 (伦敦)
- value: eu-west-3
label:
en_US: Europe (Paris)
zh_Hans: 欧洲(巴黎)
- value: sa-east-1
label:
en_US: South America (São Paulo)
zh_Hans: 南美洲(圣保罗)
- value: us-gov-west-1
label:
en_US: AWS GovCloud (US-West)
zh_Hans: AWS GovCloud (US-West)
- variable: model_for_validation
required: false
label:

View File

@ -6,6 +6,8 @@
- anthropic.claude-v2:1
- anthropic.claude-3-sonnet-v1:0
- anthropic.claude-3-haiku-v1:0
- ai21.jamba-1-5-large-v1:0
- ai21.jamba-1-5-mini-v1:0
- cohere.command-light-text-v14
- cohere.command-text-v14
- cohere.command-r-plus-v1.0
@ -15,6 +17,10 @@
- meta.llama3-1-405b-instruct-v1:0
- meta.llama3-8b-instruct-v1:0
- meta.llama3-70b-instruct-v1:0
- us.meta.llama3-2-1b-instruct-v1:0
- us.meta.llama3-2-3b-instruct-v1:0
- us.meta.llama3-2-11b-instruct-v1:0
- us.meta.llama3-2-90b-instruct-v1:0
- meta.llama2-13b-chat-v1
- meta.llama2-70b-chat-v1
- mistral.mistral-large-2407-v1:0

View File

@ -0,0 +1,26 @@
model: ai21.jamba-1-5-large-v1:0
label:
en_US: Jamba 1.5 Large
model_type: llm
model_properties:
mode: completion
context_size: 256000
parameter_rules:
- name: temperature
use_template: temperature
default: 1
min: 0.0
max: 2.0
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 4096
min: 1
max: 4096
pricing:
input: '0.002'
output: '0.008'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,26 @@
model: ai21.jamba-1-5-mini-v1:0
label:
en_US: Jamba 1.5 Mini
model_type: llm
model_properties:
mode: completion
context_size: 256000
parameter_rules:
- name: temperature
use_template: temperature
default: 1
min: 0.0
max: 2.0
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 4096
min: 1
max: 4096
pricing:
input: '0.0002'
output: '0.0004'
unit: '0.001'
currency: USD

View File

@ -63,6 +63,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
{"prefix": "us.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "eu.anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "anthropic.claude-3", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "us.meta.llama3-2", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "meta.llama", "support_system_prompts": True, "support_tool_use": False},
{"prefix": "mistral.mistral-7b-instruct", "support_system_prompts": False, "support_tool_use": False},
{"prefix": "mistral.mixtral-8x7b-instruct", "support_system_prompts": False, "support_tool_use": False},
@ -70,6 +71,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
{"prefix": "mistral.mistral-small", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "cohere.command-r", "support_system_prompts": True, "support_tool_use": True},
{"prefix": "amazon.titan", "support_system_prompts": False, "support_tool_use": False},
{"prefix": "ai21.jamba-1-5", "support_system_prompts": True, "support_tool_use": False},
]
@staticmethod
@ -90,7 +92,7 @@ class BedrockLargeLanguageModel(LargeLanguageModel):
stop: Optional[list[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: list[Callback] = None,
callbacks: Optional[list[Callback]] = None,
) -> Union[LLMResult, Generator]:
"""
Code block mode wrapper for invoking large language model

View File

@ -0,0 +1,29 @@
model: us.meta.llama3-2-11b-instruct-v1:0
label:
en_US: US Meta Llama 3.2 11B Instruct
model_type: llm
features:
- vision
- tool-call
model_properties:
mode: completion
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.5
min: 0.0
max: 1
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 512
min: 1
max: 2048
pricing:
input: '0.00035'
output: '0.00035'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,26 @@
model: us.meta.llama3-2-1b-instruct-v1:0
label:
en_US: US Meta Llama 3.2 1B Instruct
model_type: llm
model_properties:
mode: completion
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.5
min: 0.0
max: 1
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 512
min: 1
max: 2048
pricing:
input: '0.0001'
output: '0.0001'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,26 @@
model: us.meta.llama3-2-3b-instruct-v1:0
label:
en_US: US Meta Llama 3.2 3B Instruct
model_type: llm
model_properties:
mode: completion
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.5
min: 0.0
max: 1
- name: top_p
use_template: top_p
- name: max_gen_len
use_template: max_tokens
required: true
default: 512
min: 1
max: 2048
pricing:
input: '0.00015'
output: '0.00015'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,31 @@
model: us.meta.llama3-2-90b-instruct-v1:0
label:
en_US: US Meta Llama 3.2 90B Instruct
model_type: llm
features:
- tool-call
model_properties:
mode: completion
context_size: 128000
parameter_rules:
- name: temperature
use_template: temperature
default: 0.5
min: 0.0
max: 1
- name: top_p
use_template: top_p
default: 0.9
min: 0
max: 1
- name: max_gen_len
use_template: max_tokens
required: true
default: 512
min: 1
max: 2048
pricing:
input: '0.002'
output: '0.002'
unit: '0.001'
currency: USD

View File

@ -511,7 +511,7 @@ class FireworksLargeLanguageModel(_CommonFireworks, LargeLanguageModel):
model: str,
messages: list[PromptMessage],
tools: Optional[list[PromptMessageTool]] = None,
credentials: dict = None,
credentials: Optional[dict] = None,
) -> int:
"""
Approximate num tokens with GPT2 tokenizer.

View File

@ -1,4 +1,4 @@
from typing import Optional
from typing import Any, Optional
import httpx
@ -46,7 +46,7 @@ class FishAudioText2SpeechModel(TTSModel):
content_text: str,
voice: str,
user: Optional[str] = None,
) -> any:
) -> Any:
"""
Invoke text2speech model
@ -87,7 +87,7 @@ class FishAudioText2SpeechModel(TTSModel):
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str, voice: str) -> any:
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str, voice: str) -> Any:
"""
Invoke streaming text2speech model
:param model: model name
@ -112,7 +112,7 @@ class FishAudioText2SpeechModel(TTSModel):
except Exception as ex:
raise InvokeBadRequestError(str(ex))
def _tts_invoke_streaming_sentence(self, credentials: dict, content_text: str, voice: Optional[str] = None) -> any:
def _tts_invoke_streaming_sentence(self, credentials: dict, content_text: str, voice: Optional[str] = None) -> Any:
"""
Invoke streaming text2speech model

View File

@ -0,0 +1,15 @@
- gemini-1.5-pro
- gemini-1.5-pro-latest
- gemini-1.5-pro-001
- gemini-1.5-pro-002
- gemini-1.5-pro-exp-0801
- gemini-1.5-pro-exp-0827
- gemini-1.5-flash
- gemini-1.5-flash-latest
- gemini-1.5-flash-001
- gemini-1.5-flash-002
- gemini-1.5-flash-exp-0827
- gemini-1.5-flash-8b-exp-0827
- gemini-1.5-flash-8b-exp-0924
- gemini-pro
- gemini-pro-vision

View File

@ -5,3 +5,4 @@
- llama3-8b-8192
- mixtral-8x7b-32768
- llama2-70b-4096
- llama-guard-3-8b

View File

@ -0,0 +1,25 @@
model: llama-guard-3-8b
label:
zh_Hans: Llama-Guard-3-8B
en_US: Llama-Guard-3-8B
model_type: llm
features:
- agent-thought
model_properties:
mode: chat
context_size: 8192
parameter_rules:
- name: temperature
use_template: temperature
- name: top_p
use_template: top_p
- name: max_tokens
use_template: max_tokens
default: 512
min: 1
max: 8192
pricing:
input: '0.20'
output: '0.20'
unit: '0.000001'
currency: USD

View File

@ -61,11 +61,19 @@ class JinaRerankModel(RerankModel):
rerank_documents = []
for result in results["results"]:
index = result["index"]
if "document" in result:
text = result["document"]["text"]
else:
# llama.cpp rerank maynot return original documents
text = docs[index]
rerank_document = RerankDocument(
index=result["index"],
text=result["document"]["text"],
index=index,
text=text,
score=result["relevance_score"],
)
if score_threshold is None or result["relevance_score"] >= score_threshold:
rerank_documents.append(rerank_document)

View File

@ -70,11 +70,19 @@ class LocalaiRerankModel(RerankModel):
rerank_documents = []
for result in results["results"]:
index = result["index"]
if "document" in result:
text = result["document"]["text"]
else:
# llama.cpp rerank maynot return original documents
text = docs[index]
rerank_document = RerankDocument(
index=result["index"],
text=result["document"]["text"],
index=index,
text=text,
score=result["relevance_score"],
)
if score_threshold is None or result["relevance_score"] >= score_threshold:
rerank_documents.append(rerank_document)

View File

@ -111,7 +111,7 @@ class OpenAILargeLanguageModel(_CommonOpenAI, LargeLanguageModel):
stop: Optional[list[str]] = None,
stream: bool = True,
user: Optional[str] = None,
callbacks: list[Callback] = None,
callbacks: Optional[list[Callback]] = None,
) -> Union[LLMResult, Generator]:
"""
Code block mode wrapper for invoking large language model

View File

@ -2,6 +2,8 @@ from typing import IO, Optional
from openai import OpenAI
from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.speech2text_model import Speech2TextModel
from core.model_runtime.model_providers.openai._common import _CommonOpenAI
@ -58,3 +60,18 @@ class OpenAISpeech2TextModel(_CommonOpenAI, Speech2TextModel):
response = client.audio.transcriptions.create(model=model, file=file)
return response.text
def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity | None:
"""
used to define customizable model schema
"""
entity = AIModelEntity(
model=model,
label=I18nObject(en_US=model),
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_type=ModelType.SPEECH2TEXT,
model_properties={},
parameter_rules=[],
)
return entity

View File

@ -1,5 +1,5 @@
import concurrent.futures
from typing import Optional
from typing import Any, Optional
from openai import OpenAI
@ -16,7 +16,7 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
def _invoke(
self, model: str, tenant_id: str, credentials: dict, content_text: str, voice: str, user: Optional[str] = None
) -> any:
) -> Any:
"""
_invoke text2speech model
@ -55,7 +55,7 @@ class OpenAIText2SpeechModel(_CommonOpenAI, TTSModel):
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str, voice: str) -> any:
def _tts_invoke_streaming(self, model: str, credentials: dict, content_text: str, voice: str) -> Any:
"""
_tts_invoke_streaming text2speech model

View File

@ -688,7 +688,7 @@ class OAIAPICompatLargeLanguageModel(_CommonOaiApiCompat, LargeLanguageModel):
model: str,
messages: list[PromptMessage],
tools: Optional[list[PromptMessageTool]] = None,
credentials: dict = None,
credentials: Optional[dict] = None,
) -> int:
"""
Approximate num tokens with GPT2 tokenizer.

Some files were not shown because too many files have changed in this diff Show More