Merge branch 'refactor/remove-extra-config-from-file' into deploy/dev
Some checks are pending
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/amd64, build-api-amd64) (push) Waiting to run
Build and Push API & Web / build (api, DIFY_API_IMAGE_NAME, linux/arm64, build-api-arm64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/amd64, build-web-amd64) (push) Waiting to run
Build and Push API & Web / build (web, DIFY_WEB_IMAGE_NAME, linux/arm64, build-web-arm64) (push) Waiting to run
Build and Push API & Web / create-manifest (api, DIFY_API_IMAGE_NAME, merge-api-images) (push) Blocked by required conditions
Build and Push API & Web / create-manifest (web, DIFY_WEB_IMAGE_NAME, merge-web-images) (push) Blocked by required conditions

This commit is contained in:
-LAN- 2024-11-07 17:15:14 +08:00
commit 65366f188e
15 changed files with 134 additions and 40 deletions

1
.gitignore vendored
View File

@ -175,6 +175,7 @@ docker/volumes/pgvector/data/*
docker/volumes/pgvecto_rs/data/* docker/volumes/pgvecto_rs/data/*
docker/volumes/couchbase/* docker/volumes/couchbase/*
docker/volumes/oceanbase/* docker/volumes/oceanbase/*
!docker/volumes/oceanbase/init.d
docker/nginx/conf.d/default.conf docker/nginx/conf.d/default.conf
docker/nginx/ssl/* docker/nginx/ssl/*

View File

@ -121,7 +121,7 @@ WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,* CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, couchbase, vikingdb, upstash, lindorm # Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, couchbase, vikingdb, upstash, lindorm, oceanbase
VECTOR_STORE=weaviate VECTOR_STORE=weaviate
# Weaviate configuration # Weaviate configuration
@ -273,7 +273,7 @@ LINDORM_PASSWORD=admin
OCEANBASE_VECTOR_HOST=127.0.0.1 OCEANBASE_VECTOR_HOST=127.0.0.1
OCEANBASE_VECTOR_PORT=2881 OCEANBASE_VECTOR_PORT=2881
OCEANBASE_VECTOR_USER=root@test OCEANBASE_VECTOR_USER=root@test
OCEANBASE_VECTOR_PASSWORD= OCEANBASE_VECTOR_PASSWORD=difyai123456
OCEANBASE_VECTOR_DATABASE=test OCEANBASE_VECTOR_DATABASE=test
OCEANBASE_MEMORY_LIMIT=6G OCEANBASE_MEMORY_LIMIT=6G

View File

@ -16,7 +16,7 @@ from .error import FileTooLargeError, UnsupportedFileTypeError
class RemoteFileInfoApi(WebApiResource): class RemoteFileInfoApi(WebApiResource):
@marshal_with(remote_file_info_fields) @marshal_with(remote_file_info_fields)
def get(self, url): def get(self, app_model, end_user, url):
decoded_url = urllib.parse.unquote(url) decoded_url = urllib.parse.unquote(url)
resp = ssrf_proxy.head(decoded_url) resp = ssrf_proxy.head(decoded_url)
if resp.status_code != httpx.codes.OK: if resp.status_code != httpx.codes.OK:

View File

@ -0,0 +1,22 @@
class IterationNodeError(ValueError):
"""Base class for iteration node errors."""
class IteratorVariableNotFoundError(IterationNodeError):
"""Raised when the iterator variable is not found."""
class InvalidIteratorValueError(IterationNodeError):
"""Raised when the iterator value is invalid."""
class StartNodeIdNotFoundError(IterationNodeError):
"""Raised when the start node ID is not found."""
class IterationGraphNotFoundError(IterationNodeError):
"""Raised when the iteration graph is not found."""
class IterationIndexNotFoundError(IterationNodeError):
"""Raised when the iteration index is not found."""

View File

@ -38,6 +38,15 @@ from core.workflow.nodes.event import NodeEvent, RunCompletedEvent
from core.workflow.nodes.iteration.entities import ErrorHandleMode, IterationNodeData from core.workflow.nodes.iteration.entities import ErrorHandleMode, IterationNodeData
from models.workflow import WorkflowNodeExecutionStatus from models.workflow import WorkflowNodeExecutionStatus
from .exc import (
InvalidIteratorValueError,
IterationGraphNotFoundError,
IterationIndexNotFoundError,
IterationNodeError,
IteratorVariableNotFoundError,
StartNodeIdNotFoundError,
)
if TYPE_CHECKING: if TYPE_CHECKING:
from core.workflow.graph_engine.graph_engine import GraphEngine from core.workflow.graph_engine.graph_engine import GraphEngine
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
@ -69,7 +78,7 @@ class IterationNode(BaseNode[IterationNodeData]):
iterator_list_segment = self.graph_runtime_state.variable_pool.get(self.node_data.iterator_selector) iterator_list_segment = self.graph_runtime_state.variable_pool.get(self.node_data.iterator_selector)
if not iterator_list_segment: if not iterator_list_segment:
raise ValueError(f"Iterator variable {self.node_data.iterator_selector} not found") raise IteratorVariableNotFoundError(f"Iterator variable {self.node_data.iterator_selector} not found")
if len(iterator_list_segment.value) == 0: if len(iterator_list_segment.value) == 0:
yield RunCompletedEvent( yield RunCompletedEvent(
@ -83,14 +92,14 @@ class IterationNode(BaseNode[IterationNodeData]):
iterator_list_value = iterator_list_segment.to_object() iterator_list_value = iterator_list_segment.to_object()
if not isinstance(iterator_list_value, list): if not isinstance(iterator_list_value, list):
raise ValueError(f"Invalid iterator value: {iterator_list_value}, please provide a list.") raise InvalidIteratorValueError(f"Invalid iterator value: {iterator_list_value}, please provide a list.")
inputs = {"iterator_selector": iterator_list_value} inputs = {"iterator_selector": iterator_list_value}
graph_config = self.graph_config graph_config = self.graph_config
if not self.node_data.start_node_id: if not self.node_data.start_node_id:
raise ValueError(f"field start_node_id in iteration {self.node_id} not found") raise StartNodeIdNotFoundError(f"field start_node_id in iteration {self.node_id} not found")
root_node_id = self.node_data.start_node_id root_node_id = self.node_data.start_node_id
@ -98,7 +107,7 @@ class IterationNode(BaseNode[IterationNodeData]):
iteration_graph = Graph.init(graph_config=graph_config, root_node_id=root_node_id) iteration_graph = Graph.init(graph_config=graph_config, root_node_id=root_node_id)
if not iteration_graph: if not iteration_graph:
raise ValueError("iteration graph not found") raise IterationGraphNotFoundError("iteration graph not found")
variable_pool = self.graph_runtime_state.variable_pool variable_pool = self.graph_runtime_state.variable_pool
@ -222,9 +231,9 @@ class IterationNode(BaseNode[IterationNodeData]):
status=WorkflowNodeExecutionStatus.SUCCEEDED, outputs={"output": jsonable_encoder(outputs)} status=WorkflowNodeExecutionStatus.SUCCEEDED, outputs={"output": jsonable_encoder(outputs)}
) )
) )
except Exception as e: except IterationNodeError as e:
# iteration run failed # iteration run failed
logger.exception("Iteration run failed") logger.warning("Iteration run failed")
yield IterationRunFailedEvent( yield IterationRunFailedEvent(
iteration_id=self.id, iteration_id=self.id,
iteration_node_id=self.node_id, iteration_node_id=self.node_id,
@ -272,7 +281,7 @@ class IterationNode(BaseNode[IterationNodeData]):
iteration_graph = Graph.init(graph_config=graph_config, root_node_id=node_data.start_node_id) iteration_graph = Graph.init(graph_config=graph_config, root_node_id=node_data.start_node_id)
if not iteration_graph: if not iteration_graph:
raise ValueError("iteration graph not found") raise IterationGraphNotFoundError("iteration graph not found")
for sub_node_id, sub_node_config in iteration_graph.node_id_config_mapping.items(): for sub_node_id, sub_node_config in iteration_graph.node_id_config_mapping.items():
if sub_node_config.get("data", {}).get("iteration_id") != node_id: if sub_node_config.get("data", {}).get("iteration_id") != node_id:
@ -357,7 +366,7 @@ class IterationNode(BaseNode[IterationNodeData]):
next_index = int(current_index) + 1 next_index = int(current_index) + 1
if current_index is None: if current_index is None:
raise ValueError(f"iteration {self.node_id} current index not found") raise IterationIndexNotFoundError(f"iteration {self.node_id} current index not found")
for event in rst: for event in rst:
if isinstance(event, (BaseNodeEvent | BaseParallelBranchEvent)) and not event.in_iteration_id: if isinstance(event, (BaseNodeEvent | BaseParallelBranchEvent)) and not event.in_iteration_id:
event.in_iteration_id = self.node_id event.in_iteration_id = self.node_id
@ -484,8 +493,8 @@ class IterationNode(BaseNode[IterationNodeData]):
pre_iteration_output=jsonable_encoder(current_iteration_output) if current_iteration_output else None, pre_iteration_output=jsonable_encoder(current_iteration_output) if current_iteration_output else None,
) )
except Exception as e: except IterationNodeError as e:
logger.exception(f"Iteration run failed:{str(e)}") logger.warning(f"Iteration run failed:{str(e)}")
yield IterationRunFailedEvent( yield IterationRunFailedEvent(
iteration_id=self.id, iteration_id=self.id,
iteration_node_id=self.node_id, iteration_node_id=self.node_id,

View File

@ -0,0 +1,18 @@
class KnowledgeRetrievalNodeError(ValueError):
"""Base class for KnowledgeRetrievalNode errors."""
class ModelNotExistError(KnowledgeRetrievalNodeError):
"""Raised when the model does not exist."""
class ModelCredentialsNotInitializedError(KnowledgeRetrievalNodeError):
"""Raised when the model credentials are not initialized."""
class ModelNotSupportedError(KnowledgeRetrievalNodeError):
"""Raised when the model is not supported."""
class ModelQuotaExceededError(KnowledgeRetrievalNodeError):
"""Raised when the model provider quota is exceeded."""

View File

@ -8,7 +8,6 @@ from core.app.app_config.entities import DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.agent_entities import PlanningStrategy from core.entities.agent_entities import PlanningStrategy
from core.entities.model_entities import ModelStatus from core.entities.model_entities import ModelStatus
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_manager import ModelInstance, ModelManager from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelFeature, ModelType from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
@ -18,11 +17,19 @@ from core.variables import StringSegment
from core.workflow.entities.node_entities import NodeRunResult from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.nodes.base import BaseNode from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.knowledge_retrieval.entities import KnowledgeRetrievalNodeData
from extensions.ext_database import db from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment from models.dataset import Dataset, Document, DocumentSegment
from models.workflow import WorkflowNodeExecutionStatus from models.workflow import WorkflowNodeExecutionStatus
from .entities import KnowledgeRetrievalNodeData
from .exc import (
KnowledgeRetrievalNodeError,
ModelCredentialsNotInitializedError,
ModelNotExistError,
ModelNotSupportedError,
ModelQuotaExceededError,
)
logger = logging.getLogger(__name__) logger = logging.getLogger(__name__)
default_retrieval_model = { default_retrieval_model = {
@ -61,8 +68,8 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
status=WorkflowNodeExecutionStatus.SUCCEEDED, inputs=variables, process_data=None, outputs=outputs status=WorkflowNodeExecutionStatus.SUCCEEDED, inputs=variables, process_data=None, outputs=outputs
) )
except Exception as e: except KnowledgeRetrievalNodeError as e:
logger.exception("Error when running knowledge retrieval node") logger.warning("Error when running knowledge retrieval node")
return NodeRunResult(status=WorkflowNodeExecutionStatus.FAILED, inputs=variables, error=str(e)) return NodeRunResult(status=WorkflowNodeExecutionStatus.FAILED, inputs=variables, error=str(e))
def _fetch_dataset_retriever(self, node_data: KnowledgeRetrievalNodeData, query: str) -> list[dict[str, Any]]: def _fetch_dataset_retriever(self, node_data: KnowledgeRetrievalNodeData, query: str) -> list[dict[str, Any]]:
@ -295,14 +302,14 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
) )
if provider_model is None: if provider_model is None:
raise ValueError(f"Model {model_name} not exist.") raise ModelNotExistError(f"Model {model_name} not exist.")
if provider_model.status == ModelStatus.NO_CONFIGURE: if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.") raise ModelCredentialsNotInitializedError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION: elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.") raise ModelNotSupportedError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED: elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.") raise ModelQuotaExceededError(f"Model provider {provider_name} quota exceeded.")
# model config # model config
completion_params = node_data.single_retrieval_config.model.completion_params completion_params = node_data.single_retrieval_config.model.completion_params
@ -314,12 +321,12 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
# get model mode # get model mode
model_mode = node_data.single_retrieval_config.model.mode model_mode = node_data.single_retrieval_config.model.mode
if not model_mode: if not model_mode:
raise ValueError("LLM mode is required.") raise ModelNotExistError("LLM mode is required.")
model_schema = model_type_instance.get_model_schema(model_name, model_credentials) model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
if not model_schema: if not model_schema:
raise ValueError(f"Model {model_name} not exist.") raise ModelNotExistError(f"Model {model_name} not exist.")
return model_instance, ModelConfigWithCredentialsEntity( return model_instance, ModelConfigWithCredentialsEntity(
provider=provider_name, provider=provider_name,

View File

@ -0,0 +1,6 @@
class QuestionClassifierNodeError(ValueError):
"""Base class for QuestionClassifierNode errors."""
class InvalidModelTypeError(QuestionClassifierNodeError):
"""Raised when the model is not a Large Language Model."""

View File

@ -4,6 +4,7 @@ from collections.abc import Mapping, Sequence
from typing import TYPE_CHECKING, Any, Optional, cast from typing import TYPE_CHECKING, Any, Optional, cast
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.llm_generator.output_parser.errors import OutputParserError
from core.memory.token_buffer_memory import TokenBufferMemory from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance from core.model_manager import ModelInstance
from core.model_runtime.entities import LLMUsage, ModelPropertyKey, PromptMessageRole from core.model_runtime.entities import LLMUsage, ModelPropertyKey, PromptMessageRole
@ -24,6 +25,7 @@ from libs.json_in_md_parser import parse_and_check_json_markdown
from models.workflow import WorkflowNodeExecutionStatus from models.workflow import WorkflowNodeExecutionStatus
from .entities import QuestionClassifierNodeData from .entities import QuestionClassifierNodeData
from .exc import InvalidModelTypeError
from .template_prompts import ( from .template_prompts import (
QUESTION_CLASSIFIER_ASSISTANT_PROMPT_1, QUESTION_CLASSIFIER_ASSISTANT_PROMPT_1,
QUESTION_CLASSIFIER_ASSISTANT_PROMPT_2, QUESTION_CLASSIFIER_ASSISTANT_PROMPT_2,
@ -124,7 +126,7 @@ class QuestionClassifierNode(LLMNode):
category_name = classes_map[category_id_result] category_name = classes_map[category_id_result]
category_id = category_id_result category_id = category_id_result
except Exception: except OutputParserError:
logging.error(f"Failed to parse result text: {result_text}") logging.error(f"Failed to parse result text: {result_text}")
try: try:
process_data = { process_data = {
@ -309,4 +311,4 @@ class QuestionClassifierNode(LLMNode):
) )
else: else:
raise ValueError(f"Model mode {model_mode} not support.") raise InvalidModelTypeError(f"Model mode {model_mode} not support.")

View File

@ -0,0 +1,16 @@
class ToolNodeError(ValueError):
"""Base exception for tool node errors."""
pass
class ToolParameterError(ToolNodeError):
"""Exception raised for errors in tool parameters."""
pass
class ToolFileError(ToolNodeError):
"""Exception raised for errors related to tool files."""
pass

View File

@ -6,7 +6,7 @@ from sqlalchemy import select
from sqlalchemy.orm import Session from sqlalchemy.orm import Session
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
from core.file.models import File, FileTransferMethod, FileType from core.file import File, FileTransferMethod, FileType
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter
from core.tools.tool_engine import ToolEngine from core.tools.tool_engine import ToolEngine
from core.tools.tool_manager import ToolManager from core.tools.tool_manager import ToolManager
@ -15,13 +15,19 @@ from core.workflow.entities.node_entities import NodeRunMetadataKey, NodeRunResu
from core.workflow.entities.variable_pool import VariablePool from core.workflow.entities.variable_pool import VariablePool
from core.workflow.nodes.base import BaseNode from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.tool.entities import ToolNodeData
from core.workflow.utils.variable_template_parser import VariableTemplateParser from core.workflow.utils.variable_template_parser import VariableTemplateParser
from extensions.ext_database import db from extensions.ext_database import db
from factories import file_factory from factories import file_factory
from models import ToolFile from models import ToolFile
from models.workflow import WorkflowNodeExecutionStatus from models.workflow import WorkflowNodeExecutionStatus
from .entities import ToolNodeData
from .exc import (
ToolFileError,
ToolNodeError,
ToolParameterError,
)
class ToolNode(BaseNode[ToolNodeData]): class ToolNode(BaseNode[ToolNodeData]):
""" """
@ -43,7 +49,7 @@ class ToolNode(BaseNode[ToolNodeData]):
tool_runtime = ToolManager.get_workflow_tool_runtime( tool_runtime = ToolManager.get_workflow_tool_runtime(
self.tenant_id, self.app_id, self.node_id, self.node_data, self.invoke_from self.tenant_id, self.app_id, self.node_id, self.node_data, self.invoke_from
) )
except Exception as e: except ToolNodeError as e:
return NodeRunResult( return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED, status=WorkflowNodeExecutionStatus.FAILED,
inputs={}, inputs={},
@ -76,7 +82,7 @@ class ToolNode(BaseNode[ToolNodeData]):
workflow_call_depth=self.workflow_call_depth, workflow_call_depth=self.workflow_call_depth,
thread_pool_id=self.thread_pool_id, thread_pool_id=self.thread_pool_id,
) )
except Exception as e: except ToolNodeError as e:
return NodeRunResult( return NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED, status=WorkflowNodeExecutionStatus.FAILED,
inputs=parameters_for_log, inputs=parameters_for_log,
@ -134,13 +140,13 @@ class ToolNode(BaseNode[ToolNodeData]):
if tool_input.type == "variable": if tool_input.type == "variable":
variable = variable_pool.get(tool_input.value) variable = variable_pool.get(tool_input.value)
if variable is None: if variable is None:
raise ValueError(f"variable {tool_input.value} not exists") raise ToolParameterError(f"Variable {tool_input.value} does not exist")
parameter_value = variable.value parameter_value = variable.value
elif tool_input.type in {"mixed", "constant"}: elif tool_input.type in {"mixed", "constant"}:
segment_group = variable_pool.convert_template(str(tool_input.value)) segment_group = variable_pool.convert_template(str(tool_input.value))
parameter_value = segment_group.log if for_log else segment_group.text parameter_value = segment_group.log if for_log else segment_group.text
else: else:
raise ValueError(f"unknown tool input type '{tool_input.type}'") raise ToolParameterError(f"Unknown tool input type '{tool_input.type}'")
result[parameter_name] = parameter_value result[parameter_name] = parameter_value
return result return result
@ -182,7 +188,7 @@ class ToolNode(BaseNode[ToolNodeData]):
stmt = select(ToolFile).where(ToolFile.id == tool_file_id) stmt = select(ToolFile).where(ToolFile.id == tool_file_id)
tool_file = session.scalar(stmt) tool_file = session.scalar(stmt)
if tool_file is None: if tool_file is None:
raise ValueError(f"tool file {tool_file_id} not exists") raise ToolFileError(f"Tool file {tool_file_id} does not exist")
mapping = { mapping = {
"tool_file_id": tool_file_id, "tool_file_id": tool_file_id,
@ -221,7 +227,7 @@ class ToolNode(BaseNode[ToolNodeData]):
stmt = select(ToolFile).where(ToolFile.id == tool_file_id) stmt = select(ToolFile).where(ToolFile.id == tool_file_id)
tool_file = session.scalar(stmt) tool_file = session.scalar(stmt)
if tool_file is None: if tool_file is None:
raise ValueError(f"tool file {tool_file_id} not exists") raise ToolFileError(f"Tool file {tool_file_id} does not exist")
if "." in url: if "." in url:
extension = "." + url.split("/")[-1].split(".")[1] extension = "." + url.split("/")[-1].split(".")[1]
else: else:

View File

@ -9,6 +9,7 @@ def parse_json_markdown(json_string: str) -> dict:
starts = ["```json", "```", "``", "`", "{"] starts = ["```json", "```", "``", "`", "{"]
ends = ["```", "``", "`", "}"] ends = ["```", "``", "`", "}"]
end_index = -1 end_index = -1
start_index = 0
for s in starts: for s in starts:
start_index = json_string.find(s) start_index = json_string.find(s)
if start_index != -1: if start_index != -1:
@ -24,7 +25,6 @@ def parse_json_markdown(json_string: str) -> dict:
break break
if start_index != -1 and end_index != -1 and start_index < end_index: if start_index != -1 and end_index != -1 and start_index < end_index:
extracted_content = json_string[start_index:end_index].strip() extracted_content = json_string[start_index:end_index].strip()
print("content:", extracted_content, start_index, end_index)
parsed = json.loads(extracted_content) parsed = json.loads(extracted_content)
else: else:
raise Exception("Could not find JSON block in the output.") raise Exception("Could not find JSON block in the output.")

View File

@ -374,7 +374,7 @@ SUPABASE_URL=your-server-url
# ------------------------------ # ------------------------------
# The type of vector store to use. # The type of vector store to use.
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `tidb_vector`, `oracle`, `tencent`, `elasticsearch`, `analyticdb`, `couchbase`, `vikingdb`. # Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `tidb_vector`, `oracle`, `tencent`, `elasticsearch`, `analyticdb`, `couchbase`, `vikingdb`, `oceanbase`.
VECTOR_STORE=weaviate VECTOR_STORE=weaviate
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`. # The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
@ -537,10 +537,10 @@ LINDORM_USERNAME=username
LINDORM_PASSWORD=password LINDORM_PASSWORD=password
# OceanBase Vector configuration, only available when VECTOR_STORE is `oceanbase` # OceanBase Vector configuration, only available when VECTOR_STORE is `oceanbase`
OCEANBASE_VECTOR_HOST=oceanbase-vector OCEANBASE_VECTOR_HOST=oceanbase
OCEANBASE_VECTOR_PORT=2881 OCEANBASE_VECTOR_PORT=2881
OCEANBASE_VECTOR_USER=root@test OCEANBASE_VECTOR_USER=root@test
OCEANBASE_VECTOR_PASSWORD= OCEANBASE_VECTOR_PASSWORD=difyai123456
OCEANBASE_VECTOR_DATABASE=test OCEANBASE_VECTOR_DATABASE=test
OCEANBASE_MEMORY_LIMIT=6G OCEANBASE_MEMORY_LIMIT=6G

View File

@ -266,8 +266,9 @@ x-shared-env: &shared-api-worker-env
OCEANBASE_VECTOR_HOST: ${OCEANBASE_VECTOR_HOST:-http://oceanbase-vector} OCEANBASE_VECTOR_HOST: ${OCEANBASE_VECTOR_HOST:-http://oceanbase-vector}
OCEANBASE_VECTOR_PORT: ${OCEANBASE_VECTOR_PORT:-2881} OCEANBASE_VECTOR_PORT: ${OCEANBASE_VECTOR_PORT:-2881}
OCEANBASE_VECTOR_USER: ${OCEANBASE_VECTOR_USER:-root@test} OCEANBASE_VECTOR_USER: ${OCEANBASE_VECTOR_USER:-root@test}
OCEANBASE_VECTOR_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-""} OCEANBASE_VECTOR_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OCEANBASE_VECTOR_DATABASE: ${OCEANBASE_VECTOR_DATABASE:-test} OCEANBASE_VECTOR_DATABASE: ${OCEANBASE_VECTOR_DATABASE:-test}
OCEANBASE_CLUSTER_NAME: ${OCEANBASE_CLUSTER_NAME:-difyai}
OCEANBASE_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G} OCEANBASE_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G}
services: services:
@ -597,16 +598,21 @@ services:
IS_PERSISTENT: ${CHROMA_IS_PERSISTENT:-TRUE} IS_PERSISTENT: ${CHROMA_IS_PERSISTENT:-TRUE}
# OceanBase vector database # OceanBase vector database
oceanbase-vector: oceanbase:
image: quay.io/oceanbase/oceanbase-ce:4.3.3.0-100000142024101215 image: quay.io/oceanbase/oceanbase-ce:4.3.3.0-100000142024101215
profiles: profiles:
- oceanbase-vector - oceanbase
restart: always restart: always
volumes: volumes:
- ./volumes/oceanbase/data:/root/ob - ./volumes/oceanbase/data:/root/ob
- ./volumes/oceanbase/conf:/root/.obd/cluster - ./volumes/oceanbase/conf:/root/.obd/cluster
- ./volumes/oceanbase/init.d:/root/boot/init.d
environment: environment:
OB_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G} OB_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G}
OB_SYS_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OB_TENANT_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OB_CLUSTER_NAME: ${OCEANBASE_CLUSTER_NAME:-difyai}
OB_SERVER_IP: '127.0.0.1'
# Oracle vector database # Oracle vector database
oracle: oracle:

View File

@ -0,0 +1 @@
ALTER SYSTEM SET ob_vector_memory_limit_percentage = 30;