Merge branch 'fix/chore-fix' into dev/plugin-deploy

This commit is contained in:
Yeuoly 2024-11-08 13:39:45 +08:00
commit 61cf6e1c7b
No known key found for this signature in database
GPG Key ID: A66E7E320FB19F61
46 changed files with 1342 additions and 1425 deletions

View File

@ -7,6 +7,7 @@ on:
paths:
- api/**
- docker/**
- .github/workflows/api-tests.yml
concurrency:
group: api-tests-${{ github.head_ref || github.run_id }}
@ -27,16 +28,15 @@ jobs:
- name: Checkout code
uses: actions/checkout@v4
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache-dependency-path: |
api/pyproject.toml
api/poetry.lock
- name: Install Poetry
uses: abatilo/actions-poetry@v3
cache: poetry
cache-dependency-path: api/poetry.lock
- name: Check Poetry lockfile
run: |
@ -67,7 +67,7 @@ jobs:
run: sh .github/workflows/expose_service_ports.sh
- name: Set up Sandbox
uses: hoverkraft-tech/compose-action@v2.0.0
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: |
docker/docker-compose.middleware.yaml
@ -77,22 +77,3 @@ jobs:
- name: Run Workflow
run: poetry run -C api bash dev/pytest/pytest_workflow.sh
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
uses: hoverkraft-tech/compose-action@v2.0.0
with:
compose-file: |
docker/docker-compose.yaml
services: |
weaviate
qdrant
couchbase-server
etcd
minio
milvus-standalone
pgvecto-rs
pgvector
chroma
elasticsearch
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh

View File

@ -43,7 +43,7 @@ jobs:
cp middleware.env.example middleware.env
- name: Set up Middlewares
uses: hoverkraft-tech/compose-action@v2.0.0
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: |
docker/docker-compose.middleware.yaml

View File

@ -24,16 +24,16 @@ jobs:
with:
files: api/**
- name: Install Poetry
if: steps.changed-files.outputs.any_changed == 'true'
uses: abatilo/actions-poetry@v3
- name: Set up Python
uses: actions/setup-python@v5
if: steps.changed-files.outputs.any_changed == 'true'
with:
python-version: '3.10'
- name: Install Poetry
if: steps.changed-files.outputs.any_changed == 'true'
uses: abatilo/actions-poetry@v3
- name: Python dependencies
if: steps.changed-files.outputs.any_changed == 'true'
run: poetry install -C api --only lint

75
.github/workflows/vdb-tests.yml vendored Normal file
View File

@ -0,0 +1,75 @@
name: Run VDB Tests
on:
pull_request:
branches:
- main
paths:
- api/core/rag/datasource/**
- docker/**
- .github/workflows/vdb-tests.yml
concurrency:
group: vdb-tests-${{ github.head_ref || github.run_id }}
cancel-in-progress: true
jobs:
test:
name: VDB Tests
runs-on: ubuntu-latest
strategy:
matrix:
python-version:
- "3.10"
- "3.11"
- "3.12"
steps:
- name: Checkout code
uses: actions/checkout@v4
- name: Install Poetry
uses: abatilo/actions-poetry@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: poetry
cache-dependency-path: api/poetry.lock
- name: Check Poetry lockfile
run: |
poetry check -C api --lock
poetry show -C api
- name: Install dependencies
run: poetry install -C api --with dev
- name: Set up dotenvs
run: |
cp docker/.env.example docker/.env
cp docker/middleware.env.example docker/middleware.env
- name: Expose Service Ports
run: sh .github/workflows/expose_service_ports.sh
- name: Set up Vector Stores (Weaviate, Qdrant, PGVector, Milvus, PgVecto-RS, Chroma, MyScale, ElasticSearch, Couchbase)
uses: hoverkraft-tech/compose-action@v2.0.2
with:
compose-file: |
docker/docker-compose.yaml
services: |
weaviate
qdrant
couchbase-server
etcd
minio
milvus-standalone
pgvecto-rs
pgvector
chroma
elasticsearch
- name: Test Vector Stores
run: poetry run -C api bash dev/pytest/pytest_vdb.sh

1
.gitignore vendored
View File

@ -175,6 +175,7 @@ docker/volumes/pgvector/data/*
docker/volumes/pgvecto_rs/data/*
docker/volumes/couchbase/*
docker/volumes/oceanbase/*
!docker/volumes/oceanbase/init.d
docker/nginx/conf.d/default.conf
docker/nginx/ssl/*

View File

@ -46,45 +46,18 @@
</p>
## Table of Content
0. [Quick-Start🚀](https://github.com/langgenius/dify?tab=readme-ov-file#quick-start)
1. [Intro📖](https://github.com/langgenius/dify?tab=readme-ov-file#intro)
2. [How to use🔧](https://github.com/langgenius/dify?tab=readme-ov-file#using-dify)
3. [Stay Ahead🏃](https://github.com/langgenius/dify?tab=readme-ov-file#staying-ahead)
4. [Next Steps🏹](https://github.com/langgenius/dify?tab=readme-ov-file#next-steps)
5. [Contributing💪](https://github.com/langgenius/dify?tab=readme-ov-file#contributing)
6. [Community and Contact🏠](https://github.com/langgenius/dify?tab=readme-ov-file#community--contact)
7. [Star-History📈](https://github.com/langgenius/dify?tab=readme-ov-file#star-history)
8. [Security🔒](https://github.com/langgenius/dify?tab=readme-ov-file#security-disclosure)
9. [License🤝](https://github.com/langgenius/dify?tab=readme-ov-file#license)
> Make sure you read through this README before you start utilizing Dify😊
Dify is an open-source LLM app development platform. Its intuitive interface combines agentic AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.
## Quick start
The quickest way to deploy Dify locally is to run our [docker-compose.yml](https://github.com/langgenius/dify/blob/main/docker/docker-compose.yaml). Follow the instructions to start in 5 minutes.
> Before installing Dify, make sure your machine meets the following minimum system requirements:
>
>- CPU >= 2 Core
>- RAM >= 4 GiB
>- Docker and Docker Compose Installed
</br>
Run the following command in your terminal to clone the whole repo.
```bash
git clone https://github.com/langgenius/dify.git
```
After cloning,run the following command one by one.
The easiest way to start the Dify server is through [docker compose](docker/docker-compose.yaml). Before running Dify with the following commands, make sure that [Docker](https://docs.docker.com/get-docker/) and [Docker Compose](https://docs.docker.com/compose/install/) are installed on your machine:
```bash
cd dify
cd docker
@ -92,13 +65,14 @@ cp .env.example .env
docker compose up -d
```
After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization process. You will be asked to setup an admin account.
For more info of quick setup, check [here](https://docs.dify.ai/getting-started/install-self-hosted/docker-compose)
After running, you can access the Dify dashboard in your browser at [http://localhost/install](http://localhost/install) and start the initialization process.
## Intro
Dify is an open-source LLM app development platform. Its intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production. Here's a list of the core features:
</br> </br>
#### Seeking help
Please refer to our [FAQ](https://docs.dify.ai/getting-started/install-self-hosted/faqs) if you encounter problems setting up Dify. Reach out to [the community and us](#community--contact) if you are still having issues.
> If you'd like to contribute to Dify or do additional development, refer to our [guide to deploying from source code](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
## Key features
**1. Workflow**:
Build and test powerful AI workflows on a visual canvas, leveraging all the following features and beyond.
@ -149,20 +123,8 @@ Star Dify on GitHub and be instantly notified of new releases.
![star-us](https://github.com/langgenius/dify/assets/13230914/b823edc1-6388-4e25-ad45-2f6b187adbb4)
## Next steps
Go to [quick-start](https://github.com/langgenius/dify?tab=readme-ov-file#quick-start) to setup your Dify or setup by source code.
#### If you......
If you forget your admin account, you can refer to this [guide](https://docs.dify.ai/getting-started/install-self-hosted/faqs#id-4.-how-to-reset-the-password-of-the-admin-account) to reset the password.
> Use docker compose up without "-d" to enable logs printing out in your terminal. This might be useful if you have encountered unknow problems when using Dify.
If you encountered system error and would like to acquire help in Github issues, make sure you always paste logs of the error in the request to accerate the conversation. Go to [Community & contact](https://github.com/langgenius/dify?tab=readme-ov-file#community--contact) for more information.
> Please read the [Dify Documentation](https://docs.dify.ai/) for detailed how-to-use guidance. Most of the potential problems are explained in the doc.
> If you'd like to contribute to Dify or make additional development, refer to our [guide to deploying from source code](https://docs.dify.ai/getting-started/install-self-hosted/local-source-code)
## Advanced Setup
If you need to customize the configuration, please refer to the comments in our [.env.example](docker/.env.example) file and update the corresponding values in your `.env` file. Additionally, you might need to make adjustments to the `docker-compose.yaml` file itself, such as changing image versions, port mappings, or volume mounts, based on your specific deployment environment and requirements. After making any changes, please re-run `docker-compose up -d`. You can find the full list of available environment variables [here](https://docs.dify.ai/getting-started/install-self-hosted/environments).
@ -190,19 +152,18 @@ At the same time, please consider supporting Dify by sharing it on social media
> We are looking for contributors to help with translating Dify to languages other than Mandarin or English. If you are interested in helping, please see the [i18n README](https://github.com/langgenius/dify/blob/main/web/i18n/README.md) for more information, and leave us a comment in the `global-users` channel of our [Discord Community Server](https://discord.gg/8Tpq4AcN9c).
**Contributors**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Community & contact
* [Github Discussion](https://github.com/langgenius/dify/discussions). Best for: sharing feedback and asking questions.
* [GitHub Issues](https://github.com/langgenius/dify/issues). Best for: bugs you encounter using Dify.AI, and feature proposals. See our [Contribution Guide](https://github.com/langgenius/dify/blob/main/CONTRIBUTING.md).
* [Discord](https://discord.gg/FngNHpbcY7). Best for: sharing your applications and hanging out with the community.
* [X(Twitter)](https://twitter.com/dify_ai). Best for: sharing your applications and hanging out with the community.
* Make sure a log, if possible, is attached to an error reported to maximize solution efficiency.
**Contributors**
<a href="https://github.com/langgenius/dify/graphs/contributors">
<img src="https://contrib.rocks/image?repo=langgenius/dify" />
</a>
## Star history

View File

@ -121,7 +121,7 @@ WEB_API_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
CONSOLE_CORS_ALLOW_ORIGINS=http://127.0.0.1:3000,*
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, couchbase, vikingdb, upstash, lindorm
# Vector database configuration, support: weaviate, qdrant, milvus, myscale, relyt, pgvecto_rs, pgvector, pgvector, chroma, opensearch, tidb_vector, couchbase, vikingdb, upstash, lindorm, oceanbase
VECTOR_STORE=weaviate
# Weaviate configuration
@ -273,7 +273,7 @@ LINDORM_PASSWORD=admin
OCEANBASE_VECTOR_HOST=127.0.0.1
OCEANBASE_VECTOR_PORT=2881
OCEANBASE_VECTOR_USER=root@test
OCEANBASE_VECTOR_PASSWORD=
OCEANBASE_VECTOR_PASSWORD=difyai123456
OCEANBASE_VECTOR_DATABASE=test
OCEANBASE_MEMORY_LIMIT=6G
@ -320,9 +320,14 @@ ETL_TYPE=dify
UNSTRUCTURED_API_URL=
UNSTRUCTURED_API_KEY=
#ssrf
SSRF_PROXY_HTTP_URL=
SSRF_PROXY_HTTPS_URL=
SSRF_DEFAULT_MAX_RETRIES=3
SSRF_DEFAULT_TIME_OUT=
SSRF_DEFAULT_CONNECT_TIME_OUT=
SSRF_DEFAULT_READ_TIME_OUT=
SSRF_DEFAULT_WRITE_TIME_OUT=
BATCH_UPLOAD_LIMIT=10
KEYWORD_DATA_SOURCE_TYPE=database

View File

@ -76,13 +76,13 @@
1. Install dependencies for both the backend and the test environment
```bash
poetry install --with dev
poetry install -C api --with dev
```
2. Run the tests locally with mocked system environment variables in `tool.pytest_env` section in `pyproject.toml`
```bash
cd ../
poetry run -C api bash dev/pytest/pytest_all_tests.sh
```

View File

@ -109,7 +109,7 @@ class CodeExecutionSandboxConfig(BaseSettings):
)
CODE_MAX_PRECISION: PositiveInt = Field(
description="mMaximum number of decimal places for floating-point numbers in code execution",
description="Maximum number of decimal places for floating-point numbers in code execution",
default=20,
)
@ -339,6 +339,26 @@ class HttpConfig(BaseSettings):
default=None,
)
SSRF_DEFAULT_TIME_OUT: PositiveFloat = Field(
description="The default timeout period used for network requests (SSRF)",
default=5,
)
SSRF_DEFAULT_CONNECT_TIME_OUT: PositiveFloat = Field(
description="The default connect timeout period used for network requests (SSRF)",
default=5,
)
SSRF_DEFAULT_READ_TIME_OUT: PositiveFloat = Field(
description="The default read timeout period used for network requests (SSRF)",
default=5,
)
SSRF_DEFAULT_WRITE_TIME_OUT: PositiveFloat = Field(
description="The default write timeout period used for network requests (SSRF)",
default=5,
)
RESPECT_XFORWARD_HEADERS_ENABLED: bool = Field(
description="Enable or disable the X-Forwarded-For Proxy Fix middleware from Werkzeug"
" to respect X-* headers to redirect clients",

View File

@ -9,7 +9,7 @@ class PackagingInfo(BaseSettings):
CURRENT_VERSION: str = Field(
description="Dify version",
default="0.10.2",
default="0.11.0",
)
COMMIT_SHA: str = Field(

View File

@ -62,3 +62,27 @@ class EmailSendIpLimitError(BaseHTTPException):
error_code = "email_send_ip_limit"
description = "Too many emails have been sent from this IP address recently. Please try again later."
code = 429
class FileTooLargeError(BaseHTTPException):
error_code = "file_too_large"
description = "File size exceeded. {message}"
code = 413
class UnsupportedFileTypeError(BaseHTTPException):
error_code = "unsupported_file_type"
description = "File type not allowed."
code = 415
class TooManyFilesError(BaseHTTPException):
error_code = "too_many_files"
description = "Only one file is allowed."
code = 400
class NoFileUploadedError(BaseHTTPException):
error_code = "no_file_uploaded"
description = "Please upload your file."
code = 400

View File

@ -15,7 +15,7 @@ from fields.file_fields import file_fields, upload_config_fields
from libs.login import login_required
from services.file_service import FileService
from .errors import (
from .error import (
FileTooLargeError,
NoFileUploadedError,
TooManyFilesError,

View File

@ -1,25 +0,0 @@
from libs.exception import BaseHTTPException
class FileTooLargeError(BaseHTTPException):
error_code = "file_too_large"
description = "File size exceeded. {message}"
code = 413
class UnsupportedFileTypeError(BaseHTTPException):
error_code = "unsupported_file_type"
description = "File type not allowed."
code = 415
class TooManyFilesError(BaseHTTPException):
error_code = "too_many_files"
description = "Only one file is allowed."
code = 400
class NoFileUploadedError(BaseHTTPException):
error_code = "no_file_uploaded"
description = "Please upload your file."
code = 400

View File

@ -1,9 +1,11 @@
import urllib.parse
from typing import cast
import httpx
from flask_login import current_user
from flask_restful import Resource, marshal_with, reqparse
import services
from controllers.common import helpers
from core.file import helpers as file_helpers
from core.helper import ssrf_proxy
@ -11,19 +13,25 @@ from fields.file_fields import file_fields_with_signed_url, remote_file_info_fie
from models.account import Account
from services.file_service import FileService
from .error import (
FileTooLargeError,
UnsupportedFileTypeError,
)
class RemoteFileInfoApi(Resource):
@marshal_with(remote_file_info_fields)
def get(self, url):
decoded_url = urllib.parse.unquote(url)
try:
response = ssrf_proxy.head(decoded_url)
return {
"file_type": response.headers.get("Content-Type", "application/octet-stream"),
"file_length": int(response.headers.get("Content-Length", 0)),
}
except Exception as e:
return {"error": str(e)}, 400
resp = ssrf_proxy.head(decoded_url)
if resp.status_code != httpx.codes.OK:
# failed back to get method
resp = ssrf_proxy.get(decoded_url, timeout=3)
resp.raise_for_status()
return {
"file_type": resp.headers.get("Content-Type", "application/octet-stream"),
"file_length": int(resp.headers.get("Content-Length", 0)),
}
class RemoteFileUploadApi(Resource):
@ -35,17 +43,17 @@ class RemoteFileUploadApi(Resource):
url = args["url"]
response = ssrf_proxy.head(url)
response.raise_for_status()
resp = ssrf_proxy.head(url=url)
if resp.status_code != httpx.codes.OK:
resp = ssrf_proxy.get(url=url, timeout=3)
resp.raise_for_status()
file_info = helpers.guess_file_info_from_response(response)
file_info = helpers.guess_file_info_from_response(resp)
if not FileService.is_file_size_within_limit(extension=file_info.extension, file_size=file_info.size):
return {"error": "File size exceeded"}, 400
raise FileTooLargeError
response = ssrf_proxy.get(url)
response.raise_for_status()
content = response.content
content = resp.content if resp.request.method == "GET" else ssrf_proxy.get(url).content
try:
user = cast(Account, current_user)
@ -56,8 +64,10 @@ class RemoteFileUploadApi(Resource):
user=user,
source_url=url,
)
except Exception as e:
return {"error": str(e)}, 400
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError()
return {
"id": upload_file.id,

View File

@ -41,7 +41,6 @@ class FileApi(Resource):
content=file.read(),
mimetype=file.mimetype,
user=end_user,
source="datasets",
)
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)

View File

@ -1,7 +1,9 @@
import urllib.parse
import httpx
from flask_restful import marshal_with, reqparse
import services
from controllers.common import helpers
from controllers.web.wraps import WebApiResource
from core.file import helpers as file_helpers
@ -9,19 +11,22 @@ from core.helper import ssrf_proxy
from fields.file_fields import file_fields_with_signed_url, remote_file_info_fields
from services.file_service import FileService
from .error import FileTooLargeError, UnsupportedFileTypeError
class RemoteFileInfoApi(WebApiResource):
@marshal_with(remote_file_info_fields)
def get(self, url):
def get(self, app_model, end_user, url):
decoded_url = urllib.parse.unquote(url)
try:
response = ssrf_proxy.head(decoded_url)
return {
"file_type": response.headers.get("Content-Type", "application/octet-stream"),
"file_length": int(response.headers.get("Content-Length", -1)),
}
except Exception as e:
return {"error": str(e)}, 400
resp = ssrf_proxy.head(decoded_url)
if resp.status_code != httpx.codes.OK:
# failed back to get method
resp = ssrf_proxy.get(decoded_url, timeout=3)
resp.raise_for_status()
return {
"file_type": resp.headers.get("Content-Type", "application/octet-stream"),
"file_length": int(resp.headers.get("Content-Length", -1)),
}
class RemoteFileUploadApi(WebApiResource):
@ -33,28 +38,30 @@ class RemoteFileUploadApi(WebApiResource):
url = args["url"]
response = ssrf_proxy.head(url)
response.raise_for_status()
resp = ssrf_proxy.head(url=url)
if resp.status_code != httpx.codes.OK:
resp = ssrf_proxy.get(url=url, timeout=3)
resp.raise_for_status()
file_info = helpers.guess_file_info_from_response(response)
file_info = helpers.guess_file_info_from_response(resp)
if not FileService.is_file_size_within_limit(extension=file_info.extension, file_size=file_info.size):
return {"error": "File size exceeded"}, 400
raise FileTooLargeError
response = ssrf_proxy.get(url)
response.raise_for_status()
content = response.content
content = resp.content if resp.request.method == "GET" else ssrf_proxy.get(url).content
try:
upload_file = FileService.upload_file(
filename=file_info.filename,
content=content,
mimetype=file_info.mimetype,
user=end_user, # Use end_user instead of current_user
user=end_user,
source_url=url,
)
except Exception as e:
return {"error": str(e)}, 400
except services.errors.file.FileTooLargeError as file_too_large_error:
raise FileTooLargeError(file_too_large_error.description)
except services.errors.file.UnsupportedFileTypeError:
raise UnsupportedFileTypeError
return {
"id": upload_file.id,

View File

@ -12,6 +12,10 @@ SSRF_PROXY_ALL_URL = os.getenv("SSRF_PROXY_ALL_URL", "")
SSRF_PROXY_HTTP_URL = os.getenv("SSRF_PROXY_HTTP_URL", "")
SSRF_PROXY_HTTPS_URL = os.getenv("SSRF_PROXY_HTTPS_URL", "")
SSRF_DEFAULT_MAX_RETRIES = int(os.getenv("SSRF_DEFAULT_MAX_RETRIES", "3"))
SSRF_DEFAULT_TIME_OUT = float(os.getenv("SSRF_DEFAULT_TIME_OUT", "5"))
SSRF_DEFAULT_CONNECT_TIME_OUT = float(os.getenv("SSRF_DEFAULT_CONNECT_TIME_OUT", "5"))
SSRF_DEFAULT_READ_TIME_OUT = float(os.getenv("SSRF_DEFAULT_READ_TIME_OUT", "5"))
SSRF_DEFAULT_WRITE_TIME_OUT = float(os.getenv("SSRF_DEFAULT_WRITE_TIME_OUT", "5"))
proxy_mounts = (
{
@ -32,6 +36,14 @@ def make_request(method, url, max_retries=SSRF_DEFAULT_MAX_RETRIES, **kwargs):
if "follow_redirects" not in kwargs:
kwargs["follow_redirects"] = allow_redirects
if "timeout" not in kwargs:
kwargs["timeout"] = httpx.Timeout(
SSRF_DEFAULT_TIME_OUT,
connect=SSRF_DEFAULT_CONNECT_TIME_OUT,
read=SSRF_DEFAULT_READ_TIME_OUT,
write=SSRF_DEFAULT_WRITE_TIME_OUT,
)
retries = 0
while retries <= max_retries:
try:

View File

@ -1,61 +0,0 @@
model: anthropic.claude-3-5-haiku-20241022-v1:0
label:
en_US: Claude 3.5 Haiku
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 8192
min: 1
max: 8192
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
# docs: https://docs.anthropic.com/claude/docs/system-prompts
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.001'
output: '0.005'
unit: '0.001'
currency: USD

View File

@ -1,60 +0,0 @@
model: anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -1,60 +0,0 @@
model: eu.anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2(EU.Cross Region Inference)
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -1,61 +0,0 @@
model: us.anthropic.claude-3-5-haiku-20241022-v1:0
label:
en_US: Claude 3.5 Haiku(US.Cross Region Inference)
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
# docs: https://docs.anthropic.com/claude/docs/system-prompts
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.001'
output: '0.005'
unit: '0.001'
currency: USD

View File

@ -1,60 +0,0 @@
model: us.anthropic.claude-3-5-sonnet-20241022-v2:0
label:
en_US: Claude 3.5 Sonnet V2(US.Cross Region Inference)
model_type: llm
features:
- agent-thought
- vision
- tool-call
- stream-tool-call
model_properties:
mode: chat
context_size: 200000
# docs: https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters-anthropic-claude-messages.html
parameter_rules:
- name: max_tokens
use_template: max_tokens
required: true
type: int
default: 4096
min: 1
max: 4096
help:
zh_Hans: 停止前生成的最大令牌数。请注意Anthropic Claude 模型可能会在达到 max_tokens 的值之前停止生成令牌。不同的 Anthropic Claude 模型对此参数具有不同的最大值。
en_US: The maximum number of tokens to generate before stopping. Note that Anthropic Claude models might stop generating tokens before reaching the value of max_tokens. Different Anthropic Claude models have different maximum values for this parameter.
- name: temperature
use_template: temperature
required: false
type: float
default: 1
min: 0.0
max: 1.0
help:
zh_Hans: 生成内容的随机性。
en_US: The amount of randomness injected into the response.
- name: top_p
required: false
type: float
default: 0.999
min: 0.000
max: 1.000
help:
zh_Hans: 在核采样中Anthropic Claude 按概率递减顺序计算每个后续标记的所有选项的累积分布,并在达到 top_p 指定的特定概率时将其切断。您应该更改温度或top_p但不能同时更改两者。
en_US: In nucleus sampling, Anthropic Claude computes the cumulative distribution over all the options for each subsequent token in decreasing probability order and cuts it off once it reaches a particular probability specified by top_p. You should alter either temperature or top_p, but not both.
- name: top_k
required: false
type: int
default: 0
min: 0
# tip docs from aws has error, max value is 500
max: 500
help:
zh_Hans: 对于每个后续标记,仅从前 K 个选项中进行采样。使用 top_k 删除长尾低概率响应。
en_US: Only sample from the top K options for each subsequent token. Use top_k to remove long tail low probability responses.
- name: response_format
use_template: response_format
pricing:
input: '0.003'
output: '0.015'
unit: '0.001'
currency: USD

View File

@ -0,0 +1,22 @@
class IterationNodeError(ValueError):
"""Base class for iteration node errors."""
class IteratorVariableNotFoundError(IterationNodeError):
"""Raised when the iterator variable is not found."""
class InvalidIteratorValueError(IterationNodeError):
"""Raised when the iterator value is invalid."""
class StartNodeIdNotFoundError(IterationNodeError):
"""Raised when the start node ID is not found."""
class IterationGraphNotFoundError(IterationNodeError):
"""Raised when the iteration graph is not found."""
class IterationIndexNotFoundError(IterationNodeError):
"""Raised when the iteration index is not found."""

View File

@ -38,6 +38,15 @@ from core.workflow.nodes.event import NodeEvent, RunCompletedEvent
from core.workflow.nodes.iteration.entities import ErrorHandleMode, IterationNodeData
from models.workflow import WorkflowNodeExecutionStatus
from .exc import (
InvalidIteratorValueError,
IterationGraphNotFoundError,
IterationIndexNotFoundError,
IterationNodeError,
IteratorVariableNotFoundError,
StartNodeIdNotFoundError,
)
if TYPE_CHECKING:
from core.workflow.graph_engine.graph_engine import GraphEngine
logger = logging.getLogger(__name__)
@ -69,7 +78,7 @@ class IterationNode(BaseNode[IterationNodeData]):
iterator_list_segment = self.graph_runtime_state.variable_pool.get(self.node_data.iterator_selector)
if not iterator_list_segment:
raise ValueError(f"Iterator variable {self.node_data.iterator_selector} not found")
raise IteratorVariableNotFoundError(f"Iterator variable {self.node_data.iterator_selector} not found")
if len(iterator_list_segment.value) == 0:
yield RunCompletedEvent(
@ -83,14 +92,14 @@ class IterationNode(BaseNode[IterationNodeData]):
iterator_list_value = iterator_list_segment.to_object()
if not isinstance(iterator_list_value, list):
raise ValueError(f"Invalid iterator value: {iterator_list_value}, please provide a list.")
raise InvalidIteratorValueError(f"Invalid iterator value: {iterator_list_value}, please provide a list.")
inputs = {"iterator_selector": iterator_list_value}
graph_config = self.graph_config
if not self.node_data.start_node_id:
raise ValueError(f"field start_node_id in iteration {self.node_id} not found")
raise StartNodeIdNotFoundError(f"field start_node_id in iteration {self.node_id} not found")
root_node_id = self.node_data.start_node_id
@ -98,7 +107,7 @@ class IterationNode(BaseNode[IterationNodeData]):
iteration_graph = Graph.init(graph_config=graph_config, root_node_id=root_node_id)
if not iteration_graph:
raise ValueError("iteration graph not found")
raise IterationGraphNotFoundError("iteration graph not found")
variable_pool = self.graph_runtime_state.variable_pool
@ -222,9 +231,9 @@ class IterationNode(BaseNode[IterationNodeData]):
status=WorkflowNodeExecutionStatus.SUCCEEDED, outputs={"output": jsonable_encoder(outputs)}
)
)
except Exception as e:
except IterationNodeError as e:
# iteration run failed
logger.exception("Iteration run failed")
logger.warning("Iteration run failed")
yield IterationRunFailedEvent(
iteration_id=self.id,
iteration_node_id=self.node_id,
@ -272,7 +281,7 @@ class IterationNode(BaseNode[IterationNodeData]):
iteration_graph = Graph.init(graph_config=graph_config, root_node_id=node_data.start_node_id)
if not iteration_graph:
raise ValueError("iteration graph not found")
raise IterationGraphNotFoundError("iteration graph not found")
for sub_node_id, sub_node_config in iteration_graph.node_id_config_mapping.items():
if sub_node_config.get("data", {}).get("iteration_id") != node_id:
@ -357,7 +366,7 @@ class IterationNode(BaseNode[IterationNodeData]):
next_index = int(current_index) + 1
if current_index is None:
raise ValueError(f"iteration {self.node_id} current index not found")
raise IterationIndexNotFoundError(f"iteration {self.node_id} current index not found")
for event in rst:
if isinstance(event, (BaseNodeEvent | BaseParallelBranchEvent)) and not event.in_iteration_id:
event.in_iteration_id = self.node_id
@ -484,8 +493,8 @@ class IterationNode(BaseNode[IterationNodeData]):
pre_iteration_output=jsonable_encoder(current_iteration_output) if current_iteration_output else None,
)
except Exception as e:
logger.exception(f"Iteration run failed:{str(e)}")
except IterationNodeError as e:
logger.warning(f"Iteration run failed:{str(e)}")
yield IterationRunFailedEvent(
iteration_id=self.id,
iteration_node_id=self.node_id,

View File

@ -0,0 +1,18 @@
class KnowledgeRetrievalNodeError(ValueError):
"""Base class for KnowledgeRetrievalNode errors."""
class ModelNotExistError(KnowledgeRetrievalNodeError):
"""Raised when the model does not exist."""
class ModelCredentialsNotInitializedError(KnowledgeRetrievalNodeError):
"""Raised when the model credentials are not initialized."""
class ModelNotSupportedError(KnowledgeRetrievalNodeError):
"""Raised when the model is not supported."""
class ModelQuotaExceededError(KnowledgeRetrievalNodeError):
"""Raised when the model provider quota is exceeded."""

View File

@ -8,7 +8,6 @@ from core.app.app_config.entities import DatasetRetrieveConfigEntity
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.entities.agent_entities import PlanningStrategy
from core.entities.model_entities import ModelStatus
from core.errors.error import ModelCurrentlyNotSupportError, ProviderTokenNotInitError, QuotaExceededError
from core.model_manager import ModelInstance, ModelManager
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
@ -18,11 +17,19 @@ from core.variables import StringSegment
from core.workflow.entities.node_entities import NodeRunResult
from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.knowledge_retrieval.entities import KnowledgeRetrievalNodeData
from extensions.ext_database import db
from models.dataset import Dataset, Document, DocumentSegment
from models.workflow import WorkflowNodeExecutionStatus
from .entities import KnowledgeRetrievalNodeData
from .exc import (
KnowledgeRetrievalNodeError,
ModelCredentialsNotInitializedError,
ModelNotExistError,
ModelNotSupportedError,
ModelQuotaExceededError,
)
logger = logging.getLogger(__name__)
default_retrieval_model = {
@ -61,8 +68,8 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
status=WorkflowNodeExecutionStatus.SUCCEEDED, inputs=variables, process_data=None, outputs=outputs
)
except Exception as e:
logger.exception("Error when running knowledge retrieval node")
except KnowledgeRetrievalNodeError as e:
logger.warning("Error when running knowledge retrieval node")
return NodeRunResult(status=WorkflowNodeExecutionStatus.FAILED, inputs=variables, error=str(e))
def _fetch_dataset_retriever(self, node_data: KnowledgeRetrievalNodeData, query: str) -> list[dict[str, Any]]:
@ -295,14 +302,14 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
)
if provider_model is None:
raise ValueError(f"Model {model_name} not exist.")
raise ModelNotExistError(f"Model {model_name} not exist.")
if provider_model.status == ModelStatus.NO_CONFIGURE:
raise ProviderTokenNotInitError(f"Model {model_name} credentials is not initialized.")
raise ModelCredentialsNotInitializedError(f"Model {model_name} credentials is not initialized.")
elif provider_model.status == ModelStatus.NO_PERMISSION:
raise ModelCurrentlyNotSupportError(f"Dify Hosted OpenAI {model_name} currently not support.")
raise ModelNotSupportedError(f"Dify Hosted OpenAI {model_name} currently not support.")
elif provider_model.status == ModelStatus.QUOTA_EXCEEDED:
raise QuotaExceededError(f"Model provider {provider_name} quota exceeded.")
raise ModelQuotaExceededError(f"Model provider {provider_name} quota exceeded.")
# model config
completion_params = node_data.single_retrieval_config.model.completion_params
@ -314,12 +321,12 @@ class KnowledgeRetrievalNode(BaseNode[KnowledgeRetrievalNodeData]):
# get model mode
model_mode = node_data.single_retrieval_config.model.mode
if not model_mode:
raise ValueError("LLM mode is required.")
raise ModelNotExistError("LLM mode is required.")
model_schema = model_type_instance.get_model_schema(model_name, model_credentials)
if not model_schema:
raise ValueError(f"Model {model_name} not exist.")
raise ModelNotExistError(f"Model {model_name} not exist.")
return model_instance, ModelConfigWithCredentialsEntity(
provider=provider_name,

View File

@ -0,0 +1,6 @@
class QuestionClassifierNodeError(ValueError):
"""Base class for QuestionClassifierNode errors."""
class InvalidModelTypeError(QuestionClassifierNodeError):
"""Raised when the model is not a Large Language Model."""

View File

@ -4,6 +4,7 @@ from collections.abc import Mapping, Sequence
from typing import TYPE_CHECKING, Any, Optional, cast
from core.app.entities.app_invoke_entities import ModelConfigWithCredentialsEntity
from core.llm_generator.output_parser.errors import OutputParserError
from core.memory.token_buffer_memory import TokenBufferMemory
from core.model_manager import ModelInstance
from core.model_runtime.entities import LLMUsage, ModelPropertyKey, PromptMessageRole
@ -24,6 +25,7 @@ from libs.json_in_md_parser import parse_and_check_json_markdown
from models.workflow import WorkflowNodeExecutionStatus
from .entities import QuestionClassifierNodeData
from .exc import InvalidModelTypeError
from .template_prompts import (
QUESTION_CLASSIFIER_ASSISTANT_PROMPT_1,
QUESTION_CLASSIFIER_ASSISTANT_PROMPT_2,
@ -124,7 +126,7 @@ class QuestionClassifierNode(LLMNode):
category_name = classes_map[category_id_result]
category_id = category_id_result
except Exception:
except OutputParserError:
logging.error(f"Failed to parse result text: {result_text}")
try:
process_data = {
@ -309,4 +311,4 @@ class QuestionClassifierNode(LLMNode):
)
else:
raise ValueError(f"Model mode {model_mode} not support.")
raise InvalidModelTypeError(f"Model mode {model_mode} not support.")

View File

@ -0,0 +1,16 @@
class ToolNodeError(ValueError):
"""Base exception for tool node errors."""
pass
class ToolParameterError(ToolNodeError):
"""Exception raised for errors in tool parameters."""
pass
class ToolFileError(ToolNodeError):
"""Exception raised for errors related to tool files."""
pass

View File

@ -6,7 +6,7 @@ from sqlalchemy import select
from sqlalchemy.orm import Session
from core.callback_handler.workflow_tool_callback_handler import DifyWorkflowCallbackHandler
from core.file.models import File, FileTransferMethod, FileType
from core.file import File, FileTransferMethod, FileType
from core.tools.entities.tool_entities import ToolInvokeMessage, ToolParameter
from core.tools.tool_engine import ToolEngine
from core.tools.tool_manager import ToolManager
@ -19,12 +19,18 @@ from core.workflow.enums import SystemVariableKey
from core.workflow.nodes.base import BaseNode
from core.workflow.nodes.enums import NodeType
from core.workflow.nodes.event import RunCompletedEvent, RunStreamChunkEvent
from core.workflow.nodes.tool.entities import ToolNodeData
from core.workflow.utils.variable_template_parser import VariableTemplateParser
from extensions.ext_database import db
from models.tools import ToolFile
from models.workflow import WorkflowNodeExecutionStatus
from .entities import ToolNodeData
from .exc import (
ToolFileError,
ToolNodeError,
ToolParameterError,
)
class ToolNode(BaseNode[ToolNodeData]):
"""
@ -49,7 +55,7 @@ class ToolNode(BaseNode[ToolNodeData]):
tool_runtime = ToolManager.get_workflow_tool_runtime(
self.tenant_id, self.app_id, self.node_id, self.node_data, self.invoke_from
)
except Exception as e:
except ToolNodeError as e:
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
@ -58,7 +64,6 @@ class ToolNode(BaseNode[ToolNodeData]):
error=f"Failed to get tool runtime: {str(e)}",
)
)
return
# get parameters
tool_parameters = tool_runtime.get_merged_runtime_parameters() or []
@ -85,7 +90,7 @@ class ToolNode(BaseNode[ToolNodeData]):
app_id=self.app_id,
# TODO: conversation id and message id
)
except Exception as e:
except ToolNodeError as e:
yield RunCompletedEvent(
run_result=NodeRunResult(
status=WorkflowNodeExecutionStatus.FAILED,
@ -94,7 +99,6 @@ class ToolNode(BaseNode[ToolNodeData]):
error=f"Failed to invoke tool: {str(e)}",
)
)
return
# convert tool messages
yield from self._transform_message(message_stream, tool_info, parameters_for_log)
@ -131,14 +135,13 @@ class ToolNode(BaseNode[ToolNodeData]):
if tool_input.type == "variable":
variable = variable_pool.get(tool_input.value)
if variable is None:
raise ValueError(f"variable {tool_input.value} not exists")
raise ToolParameterError(f"Variable {tool_input.value} does not exist")
parameter_value = variable.value
elif tool_input.type in {"mixed", "constant"}:
segment_group = variable_pool.convert_template(str(tool_input.value))
parameter_value = segment_group.log if for_log else segment_group.text
else:
raise ValueError(f"unknown tool input type '{tool_input.type}'")
raise ToolParameterError(f"Unknown tool input type '{tool_input.type}'")
result[parameter_name] = parameter_value
return result
@ -187,7 +190,7 @@ class ToolNode(BaseNode[ToolNodeData]):
stmt = select(ToolFile).where(ToolFile.id == tool_file_id)
tool_file = session.scalar(stmt)
if tool_file is None:
raise ValueError(f"tool file {tool_file_id} not exists")
raise ToolFileError(f"Tool file {tool_file_id} does not exist")
files.append(
File(
@ -212,8 +215,7 @@ class ToolNode(BaseNode[ToolNodeData]):
stmt = select(ToolFile).where(ToolFile.id == tool_file_id)
tool_file = session.scalar(stmt)
if tool_file is None:
raise ValueError(f"tool file {tool_file_id} not exists")
raise ToolFileError(f"tool file {tool_file_id} not exists")
files.append(
File(
tenant_id=self.tenant_id,

View File

@ -9,6 +9,7 @@ def parse_json_markdown(json_string: str) -> dict:
starts = ["```json", "```", "``", "`", "{"]
ends = ["```", "``", "`", "}"]
end_index = -1
start_index = 0
for s in starts:
start_index = json_string.find(s)
if start_index != -1:
@ -24,7 +25,6 @@ def parse_json_markdown(json_string: str) -> dict:
break
if start_index != -1 and end_index != -1 and start_index < end_index:
extracted_content = json_string[start_index:end_index].strip()
print("content:", extracted_content, start_index, end_index)
parsed = json.loads(extracted_content)
else:
raise Exception("Could not find JSON block in the output.")

View File

@ -1,7 +1,7 @@
import json
import re
import uuid
from collections.abc import Mapping, Sequence
from collections.abc import Mapping
from datetime import datetime
from enum import Enum
from typing import TYPE_CHECKING, Optional
@ -14,7 +14,6 @@ from typing import Any, Literal
import sqlalchemy as sa
from flask import request
from flask_login import UserMixin
from pydantic import BaseModel, Field
from sqlalchemy import Float, Index, PrimaryKeyConstraint, func, text
from sqlalchemy.orm import Mapped, mapped_column
@ -31,14 +30,6 @@ from .account import Account, Tenant
from .types import StringUUID
class FileUploadConfig(BaseModel):
enabled: bool = Field(default=False)
allowed_file_types: Sequence[FileType] = Field(default_factory=list)
allowed_extensions: Sequence[str] = Field(default_factory=list)
allowed_upload_methods: Sequence[FileTransferMethod] = Field(default_factory=list)
number_limits: int = Field(default=0, gt=0, le=10)
class DifySetup(Base):
__tablename__ = "dify_setups"
__table_args__ = (db.PrimaryKeyConstraint("version", name="dify_setup_pkey"),)

1766
api/poetry.lock generated

File diff suppressed because it is too large Load Diff

View File

@ -168,7 +168,7 @@ readabilipy = "0.2.0"
redis = { version = "~5.0.3", extras = ["hiredis"] }
replicate = "~0.22.0"
resend = "~0.7.0"
sagemaker = "2.231.0"
sagemaker = "~2.231.0"
scikit-learn = "~1.5.1"
sentry-sdk = { version = "~1.44.1", extras = ["flask"] }
sqlalchemy = "~2.0.29"

View File

@ -27,11 +27,7 @@ from .exc import (
logger = logging.getLogger(__name__)
current_dsl_version = "0.1.2"
dsl_to_dify_version_mapping: dict[str, str] = {
"0.1.2": "0.8.0",
"0.1.1": "0.6.0", # dsl version -> from dify version
}
current_dsl_version = "0.1.3"
class AppDslService:

View File

@ -7,8 +7,6 @@ import httpx
import validators
from constants import HIDDEN_VALUE
# from tasks.external_document_indexing_task import external_document_indexing_task
from core.helper import ssrf_proxy
from extensions.ext_database import db
from models.dataset import (

View File

@ -2,7 +2,7 @@ version: '3'
services:
# API service
api:
image: langgenius/dify-api:0.10.2
image: langgenius/dify-api:0.11.0
restart: always
environment:
# Startup mode, 'api' starts the API server.
@ -227,7 +227,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.10.2
image: langgenius/dify-api:0.11.0
restart: always
environment:
CONSOLE_WEB_URL: ''
@ -396,7 +396,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.10.2
image: langgenius/dify-web:0.11.0
restart: always
environment:
# The base URL of console application api server, refers to the Console base URL of WEB service if console domain is

View File

@ -374,7 +374,7 @@ SUPABASE_URL=your-server-url
# ------------------------------
# The type of vector store to use.
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `tidb_vector`, `oracle`, `tencent`, `elasticsearch`, `analyticdb`, `couchbase`, `vikingdb`.
# Supported values are `weaviate`, `qdrant`, `milvus`, `myscale`, `relyt`, `pgvector`, `pgvecto-rs`, `chroma`, `opensearch`, `tidb_vector`, `oracle`, `tencent`, `elasticsearch`, `analyticdb`, `couchbase`, `vikingdb`, `oceanbase`.
VECTOR_STORE=weaviate
# The Weaviate endpoint URL. Only available when VECTOR_STORE is `weaviate`.
@ -537,10 +537,10 @@ LINDORM_USERNAME=username
LINDORM_PASSWORD=password
# OceanBase Vector configuration, only available when VECTOR_STORE is `oceanbase`
OCEANBASE_VECTOR_HOST=oceanbase-vector
OCEANBASE_VECTOR_HOST=oceanbase
OCEANBASE_VECTOR_PORT=2881
OCEANBASE_VECTOR_USER=root@test
OCEANBASE_VECTOR_PASSWORD=
OCEANBASE_VECTOR_PASSWORD=difyai123456
OCEANBASE_VECTOR_DATABASE=test
OCEANBASE_MEMORY_LIMIT=6G

View File

@ -266,14 +266,15 @@ x-shared-env: &shared-api-worker-env
OCEANBASE_VECTOR_HOST: ${OCEANBASE_VECTOR_HOST:-http://oceanbase-vector}
OCEANBASE_VECTOR_PORT: ${OCEANBASE_VECTOR_PORT:-2881}
OCEANBASE_VECTOR_USER: ${OCEANBASE_VECTOR_USER:-root@test}
OCEANBASE_VECTOR_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-""}
OCEANBASE_VECTOR_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OCEANBASE_VECTOR_DATABASE: ${OCEANBASE_VECTOR_DATABASE:-test}
OCEANBASE_CLUSTER_NAME: ${OCEANBASE_CLUSTER_NAME:-difyai}
OCEANBASE_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G}
services:
# API service
api:
image: langgenius/dify-api:0.10.2
image: langgenius/dify-api:0.11.0
restart: always
environment:
# Use the shared environment variables.
@ -293,7 +294,7 @@ services:
# worker service
# The Celery worker for processing the queue.
worker:
image: langgenius/dify-api:0.10.2
image: langgenius/dify-api:0.11.0
restart: always
environment:
# Use the shared environment variables.
@ -312,7 +313,7 @@ services:
# Frontend web application.
web:
image: langgenius/dify-web:0.10.2
image: langgenius/dify-web:0.11.0
restart: always
environment:
CONSOLE_API_URL: ${CONSOLE_API_URL:-}
@ -597,16 +598,21 @@ services:
IS_PERSISTENT: ${CHROMA_IS_PERSISTENT:-TRUE}
# OceanBase vector database
oceanbase-vector:
oceanbase:
image: quay.io/oceanbase/oceanbase-ce:4.3.3.0-100000142024101215
profiles:
- oceanbase-vector
- oceanbase
restart: always
volumes:
- ./volumes/oceanbase/data:/root/ob
- ./volumes/oceanbase/conf:/root/.obd/cluster
- ./volumes/oceanbase/init.d:/root/boot/init.d
environment:
OB_MEMORY_LIMIT: ${OCEANBASE_MEMORY_LIMIT:-6G}
OB_SYS_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OB_TENANT_PASSWORD: ${OCEANBASE_VECTOR_PASSWORD:-difyai123456}
OB_CLUSTER_NAME: ${OCEANBASE_CLUSTER_NAME:-difyai}
OB_SERVER_IP: '127.0.0.1'
# Oracle vector database
oracle:

View File

@ -0,0 +1 @@
ALTER SYSTEM SET ob_vector_memory_limit_percentage = 30;

View File

@ -8,18 +8,22 @@ import classNames from 'classnames'
import { ImagePlus } from '../icons/src/vender/line/images'
import { useDraggableUploader } from './hooks'
import { checkIsAnimatedImage } from './utils'
import { ALLOW_FILE_EXTENSIONS } from '@/types/app'
type UploaderProps = {
className?: string
onImageCropped?: (tempUrl: string, croppedAreaPixels: Area, fileName: string) => void
onUpload?: (file?: File) => void
}
const Uploader: FC<UploaderProps> = ({
className,
onImageCropped,
onUpload,
}) => {
const [inputImage, setInputImage] = useState<{ file: File; url: string }>()
const [isAnimatedImage, setIsAnimatedImage] = useState<boolean>(false)
useEffect(() => {
return () => {
if (inputImage)
@ -34,12 +38,19 @@ const Uploader: FC<UploaderProps> = ({
if (!inputImage)
return
onImageCropped?.(inputImage.url, croppedAreaPixels, inputImage.file.name)
onUpload?.(undefined)
}
const handleLocalFileInput = (e: ChangeEvent<HTMLInputElement>) => {
const file = e.target.files?.[0]
if (file)
if (file) {
setInputImage({ file, url: URL.createObjectURL(file) })
checkIsAnimatedImage(file).then((isAnimatedImage) => {
setIsAnimatedImage(!!isAnimatedImage)
if (isAnimatedImage)
onUpload?.(file)
})
}
}
const {
@ -52,6 +63,26 @@ const Uploader: FC<UploaderProps> = ({
const inputRef = createRef<HTMLInputElement>()
const handleShowImage = () => {
if (isAnimatedImage) {
return (
<img src={inputImage?.url} alt='' />
)
}
return (
<Cropper
image={inputImage?.url}
crop={crop}
zoom={zoom}
aspect={1}
onCropChange={setCrop}
onCropComplete={onCropComplete}
onZoomChange={setZoom}
/>
)
}
return (
<div className={classNames(className, 'w-full px-3 py-1.5')}>
<div
@ -79,15 +110,7 @@ const Uploader: FC<UploaderProps> = ({
</div>
<div className="text-xs pointer-events-none">Supports PNG, JPG, JPEG, WEBP and GIF</div>
</>
: <Cropper
image={inputImage.url}
crop={crop}
zoom={zoom}
aspect={1}
onCropChange={setCrop}
onCropComplete={onCropComplete}
onZoomChange={setZoom}
/>
: handleShowImage()
}
</div>
</div>

View File

@ -74,6 +74,11 @@ const AppIconPicker: FC<AppIconPickerProps> = ({
setImageCropInfo({ tempUrl, croppedAreaPixels, fileName })
}
const [uploadImageInfo, setUploadImageInfo] = useState<{ file?: File }>()
const handleUpload = async (file?: File) => {
setUploadImageInfo({ file })
}
const handleSelect = async () => {
if (activeTab === 'emoji') {
if (emoji) {
@ -85,9 +90,13 @@ const AppIconPicker: FC<AppIconPickerProps> = ({
}
}
else {
if (!imageCropInfo)
if (!imageCropInfo && !uploadImageInfo)
return
setUploading(true)
if (imageCropInfo.file) {
handleLocalFileUpload(imageCropInfo.file)
return
}
const blob = await getCroppedImg(imageCropInfo.tempUrl, imageCropInfo.croppedAreaPixels, imageCropInfo.fileName)
const file = new File([blob], imageCropInfo.fileName, { type: blob.type })
handleLocalFileUpload(file)
@ -121,7 +130,7 @@ const AppIconPicker: FC<AppIconPickerProps> = ({
<Divider className='m-0' />
<EmojiPickerInner className={activeTab === 'emoji' ? 'block' : 'hidden'} onSelect={handleSelectEmoji} />
<Uploader className={activeTab === 'image' ? 'block' : 'hidden'} onImageCropped={handleImageCropped} />
<Uploader className={activeTab === 'image' ? 'block' : 'hidden'} onImageCropped={handleImageCropped} onUpload={handleUpload}/>
<Divider className='m-0' />
<div className='w-full flex items-center justify-center p-3 gap-2'>

View File

@ -115,3 +115,52 @@ export default async function getCroppedImg(
}, mimeType)
})
}
export function checkIsAnimatedImage(file) {
return new Promise((resolve, reject) => {
const fileReader = new FileReader()
fileReader.onload = function (e) {
const arr = new Uint8Array(e.target.result)
// Check file extension
const fileName = file.name.toLowerCase()
if (fileName.endsWith('.gif')) {
// If file is a GIF, assume it's animated
resolve(true)
}
// Check for WebP signature (RIFF and WEBP)
else if (isWebP(arr)) {
resolve(checkWebPAnimation(arr)) // Check if it's animated
}
else {
resolve(false) // Not a GIF or WebP
}
}
fileReader.onerror = function (err) {
reject(err) // Reject the promise on error
}
// Read the file as an array buffer
fileReader.readAsArrayBuffer(file)
})
}
// Function to check for WebP signature
function isWebP(arr) {
return (
arr[0] === 0x52 && arr[1] === 0x49 && arr[2] === 0x46 && arr[3] === 0x46
&& arr[8] === 0x57 && arr[9] === 0x45 && arr[10] === 0x42 && arr[11] === 0x50
) // "WEBP"
}
// Function to check if the WebP is animated (contains ANIM chunk)
function checkWebPAnimation(arr) {
// Search for the ANIM chunk in WebP to determine if it's animated
for (let i = 12; i < arr.length - 4; i++) {
if (arr[i] === 0x41 && arr[i + 1] === 0x4E && arr[i + 2] === 0x49 && arr[i + 3] === 0x4D)
return true // Found animation
}
return false // No animation chunk found
}

View File

@ -28,7 +28,7 @@ const Category: FC<ICategoryProps> = ({
allCategoriesEn,
}) => {
const { t } = useTranslation()
const isAllCategories = !list.includes(value as AppCategory)
const isAllCategories = !list.includes(value as AppCategory) || value === allCategoriesEn
const itemClassName = (isSelected: boolean) => cn(
'flex items-center px-3 py-[7px] h-[32px] rounded-lg border-[0.5px] border-transparent text-gray-700 font-medium leading-[18px] cursor-pointer hover:bg-gray-200',
@ -44,7 +44,7 @@ const Category: FC<ICategoryProps> = ({
<ThumbsUp className='mr-1 w-3.5 h-3.5' />
{t('explore.apps.allCategories')}
</div>
{list.map(name => (
{list.filter(name => name !== allCategoriesEn).map(name => (
<div
key={name}
className={itemClassName(name === value)}

View File

@ -169,7 +169,7 @@ const translation = {
deleteConfirmTip: '확인하려면 등록된 이메일에서 다음 내용을 로 보내주세요 ',
myAccount: '내 계정',
studio: '디파이 스튜디오',
account: '계',
account: '계',
},
members: {
team: '팀',

View File

@ -1,6 +1,6 @@
{
"name": "dify-web",
"version": "0.10.2",
"version": "0.11.0",
"private": true,
"engines": {
"node": ">=18.17.0"