mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 03:32:23 +08:00
Fix/agent external knowledge retrieval (#9241)
This commit is contained in:
parent
44f6a536d2
commit
42b02b3a5f
|
@ -191,6 +191,22 @@ class CeleryConfig(DatabaseConfig):
|
|||
return self.CELERY_BROKER_URL.startswith("rediss://") if self.CELERY_BROKER_URL else False
|
||||
|
||||
|
||||
class InternalTestConfig(BaseSettings):
|
||||
"""
|
||||
Configuration settings for Internal Test
|
||||
"""
|
||||
|
||||
AWS_SECRET_ACCESS_KEY: Optional[str] = Field(
|
||||
description="Internal test AWS secret access key",
|
||||
default=None,
|
||||
)
|
||||
|
||||
AWS_ACCESS_KEY_ID: Optional[str] = Field(
|
||||
description="Internal test AWS access key ID",
|
||||
default=None,
|
||||
)
|
||||
|
||||
|
||||
class MiddlewareConfig(
|
||||
# place the configs in alphabet order
|
||||
CeleryConfig,
|
||||
|
@ -224,5 +240,6 @@ class MiddlewareConfig(
|
|||
TiDBVectorConfig,
|
||||
WeaviateConfig,
|
||||
ElasticsearchConfig,
|
||||
InternalTestConfig,
|
||||
):
|
||||
pass
|
||||
|
|
|
@ -13,6 +13,7 @@ from libs.login import login_required
|
|||
from services.dataset_service import DatasetService
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
from services.hit_testing_service import HitTestingService
|
||||
from services.knowledge_service import ExternalDatasetTestService
|
||||
|
||||
|
||||
def _validate_name(name):
|
||||
|
@ -232,8 +233,31 @@ class ExternalKnowledgeHitTestingApi(Resource):
|
|||
raise InternalServerError(str(e))
|
||||
|
||||
|
||||
class BedrockRetrievalApi(Resource):
|
||||
# this api is only for internal testing
|
||||
def post(self):
|
||||
parser = reqparse.RequestParser()
|
||||
parser.add_argument("retrieval_setting", nullable=False, required=True, type=dict, location="json")
|
||||
parser.add_argument(
|
||||
"query",
|
||||
nullable=False,
|
||||
required=True,
|
||||
type=str,
|
||||
)
|
||||
parser.add_argument("knowledge_id", nullable=False, required=True, type=str)
|
||||
args = parser.parse_args()
|
||||
|
||||
# Call the knowledge retrieval service
|
||||
result = ExternalDatasetTestService.knowledge_retrieval(
|
||||
args["retrieval_setting"], args["query"], args["knowledge_id"]
|
||||
)
|
||||
return result, 200
|
||||
|
||||
|
||||
api.add_resource(ExternalKnowledgeHitTestingApi, "/datasets/<uuid:dataset_id>/external-hit-testing")
|
||||
api.add_resource(ExternalDatasetCreateApi, "/datasets/external")
|
||||
api.add_resource(ExternalApiTemplateListApi, "/datasets/external-knowledge-api")
|
||||
api.add_resource(ExternalApiTemplateApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>")
|
||||
api.add_resource(ExternalApiUseCheckApi, "/datasets/external-knowledge-api/<uuid:external_knowledge_api_id>/use-check")
|
||||
# this api is only for internal test
|
||||
api.add_resource(BedrockRetrievalApi, "/test/retrieval")
|
||||
|
|
|
@ -539,7 +539,7 @@ class DatasetRetrieval:
|
|||
continue
|
||||
|
||||
# pass if dataset is not available
|
||||
if dataset and dataset.available_document_count == 0:
|
||||
if dataset and dataset.provider != "external" and dataset.available_document_count == 0:
|
||||
continue
|
||||
|
||||
available_datasets.append(dataset)
|
||||
|
|
|
@ -1,10 +1,12 @@
|
|||
from pydantic import BaseModel, Field
|
||||
|
||||
from core.rag.datasource.retrieval_service import RetrievalService
|
||||
from core.rag.models.document import Document as RetrievalDocument
|
||||
from core.rag.retrieval.retrieval_methods import RetrievalMethod
|
||||
from core.tools.tool.dataset_retriever.dataset_retriever_base_tool import DatasetRetrieverBaseTool
|
||||
from extensions.ext_database import db
|
||||
from models.dataset import Dataset, Document, DocumentSegment
|
||||
from services.external_knowledge_service import ExternalDatasetService
|
||||
|
||||
default_retrieval_model = {
|
||||
"search_method": RetrievalMethod.SEMANTIC_SEARCH.value,
|
||||
|
@ -53,97 +55,137 @@ class DatasetRetrieverTool(DatasetRetrieverBaseTool):
|
|||
|
||||
for hit_callback in self.hit_callbacks:
|
||||
hit_callback.on_query(query, dataset.id)
|
||||
|
||||
# get retrieval model , if the model is not setting , using default
|
||||
retrieval_model = dataset.retrieval_model or default_retrieval_model
|
||||
if dataset.indexing_technique == "economy":
|
||||
# use keyword table query
|
||||
documents = RetrievalService.retrieve(
|
||||
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=self.top_k
|
||||
if dataset.provider == "external":
|
||||
results = []
|
||||
external_documents = ExternalDatasetService.fetch_external_knowledge_retrieval(
|
||||
tenant_id=dataset.tenant_id,
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
external_retrieval_parameters=dataset.retrieval_model,
|
||||
)
|
||||
return str("\n".join([document.page_content for document in documents]))
|
||||
else:
|
||||
if self.top_k > 0:
|
||||
# retrieval source
|
||||
documents = RetrievalService.retrieve(
|
||||
retrieval_method=retrieval_model.get("search_method", "semantic_search"),
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=self.top_k,
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
else 0.0,
|
||||
reranking_model=retrieval_model.get("reranking_model", None)
|
||||
if retrieval_model["reranking_enable"]
|
||||
else None,
|
||||
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
||||
weights=retrieval_model.get("weights", None),
|
||||
for external_document in external_documents:
|
||||
document = RetrievalDocument(
|
||||
page_content=external_document.get("content"),
|
||||
metadata=external_document.get("metadata"),
|
||||
provider="external",
|
||||
)
|
||||
else:
|
||||
documents = []
|
||||
|
||||
document.metadata["score"] = external_document.get("score")
|
||||
document.metadata["title"] = external_document.get("title")
|
||||
document.metadata["dataset_id"] = dataset.id
|
||||
document.metadata["dataset_name"] = dataset.name
|
||||
results.append(document)
|
||||
# deal with external documents
|
||||
context_list = []
|
||||
for position, item in enumerate(results, start=1):
|
||||
source = {
|
||||
"position": position,
|
||||
"dataset_id": item.metadata.get("dataset_id"),
|
||||
"dataset_name": item.metadata.get("dataset_name"),
|
||||
"document_name": item.metadata.get("title"),
|
||||
"data_source_type": "external",
|
||||
"retriever_from": self.retriever_from,
|
||||
"score": item.metadata.get("score"),
|
||||
"title": item.metadata.get("title"),
|
||||
"content": item.page_content,
|
||||
}
|
||||
context_list.append(source)
|
||||
for hit_callback in self.hit_callbacks:
|
||||
hit_callback.on_tool_end(documents)
|
||||
document_score_list = {}
|
||||
if dataset.indexing_technique != "economy":
|
||||
for item in documents:
|
||||
if item.metadata.get("score"):
|
||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||
document_context_list = []
|
||||
index_node_ids = [document.metadata["doc_id"] for document in documents]
|
||||
segments = DocumentSegment.query.filter(
|
||||
DocumentSegment.dataset_id == self.dataset_id,
|
||||
DocumentSegment.completed_at.isnot(None),
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids),
|
||||
).all()
|
||||
hit_callback.return_retriever_resource_info(context_list)
|
||||
|
||||
if segments:
|
||||
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||
sorted_segments = sorted(
|
||||
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
||||
return str("\n".join([item.page_content for item in results]))
|
||||
else:
|
||||
# get retrieval model , if the model is not setting , using default
|
||||
retrieval_model = dataset.retrieval_model or default_retrieval_model
|
||||
if dataset.indexing_technique == "economy":
|
||||
# use keyword table query
|
||||
documents = RetrievalService.retrieve(
|
||||
retrieval_method="keyword_search", dataset_id=dataset.id, query=query, top_k=self.top_k
|
||||
)
|
||||
for segment in sorted_segments:
|
||||
if segment.answer:
|
||||
document_context_list.append(f"question:{segment.get_sign_content()} answer:{segment.answer}")
|
||||
else:
|
||||
document_context_list.append(segment.get_sign_content())
|
||||
if self.return_resource:
|
||||
context_list = []
|
||||
resource_number = 1
|
||||
return str("\n".join([document.page_content for document in documents]))
|
||||
else:
|
||||
if self.top_k > 0:
|
||||
# retrieval source
|
||||
documents = RetrievalService.retrieve(
|
||||
retrieval_method=retrieval_model.get("search_method", "semantic_search"),
|
||||
dataset_id=dataset.id,
|
||||
query=query,
|
||||
top_k=self.top_k,
|
||||
score_threshold=retrieval_model.get("score_threshold", 0.0)
|
||||
if retrieval_model["score_threshold_enabled"]
|
||||
else 0.0,
|
||||
reranking_model=retrieval_model.get("reranking_model", None)
|
||||
if retrieval_model["reranking_enable"]
|
||||
else None,
|
||||
reranking_mode=retrieval_model.get("reranking_mode") or "reranking_model",
|
||||
weights=retrieval_model.get("weights", None),
|
||||
)
|
||||
else:
|
||||
documents = []
|
||||
|
||||
for hit_callback in self.hit_callbacks:
|
||||
hit_callback.on_tool_end(documents)
|
||||
document_score_list = {}
|
||||
if dataset.indexing_technique != "economy":
|
||||
for item in documents:
|
||||
if item.metadata.get("score"):
|
||||
document_score_list[item.metadata["doc_id"]] = item.metadata["score"]
|
||||
document_context_list = []
|
||||
index_node_ids = [document.metadata["doc_id"] for document in documents]
|
||||
segments = DocumentSegment.query.filter(
|
||||
DocumentSegment.dataset_id == self.dataset_id,
|
||||
DocumentSegment.completed_at.isnot(None),
|
||||
DocumentSegment.status == "completed",
|
||||
DocumentSegment.enabled == True,
|
||||
DocumentSegment.index_node_id.in_(index_node_ids),
|
||||
).all()
|
||||
|
||||
if segments:
|
||||
index_node_id_to_position = {id: position for position, id in enumerate(index_node_ids)}
|
||||
sorted_segments = sorted(
|
||||
segments, key=lambda segment: index_node_id_to_position.get(segment.index_node_id, float("inf"))
|
||||
)
|
||||
for segment in sorted_segments:
|
||||
context = {}
|
||||
document = Document.query.filter(
|
||||
Document.id == segment.document_id,
|
||||
Document.enabled == True,
|
||||
Document.archived == False,
|
||||
).first()
|
||||
if dataset and document:
|
||||
source = {
|
||||
"position": resource_number,
|
||||
"dataset_id": dataset.id,
|
||||
"dataset_name": dataset.name,
|
||||
"document_id": document.id,
|
||||
"document_name": document.name,
|
||||
"data_source_type": document.data_source_type,
|
||||
"segment_id": segment.id,
|
||||
"retriever_from": self.retriever_from,
|
||||
"score": document_score_list.get(segment.index_node_id, None),
|
||||
}
|
||||
if self.retriever_from == "dev":
|
||||
source["hit_count"] = segment.hit_count
|
||||
source["word_count"] = segment.word_count
|
||||
source["segment_position"] = segment.position
|
||||
source["index_node_hash"] = segment.index_node_hash
|
||||
if segment.answer:
|
||||
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
||||
else:
|
||||
source["content"] = segment.content
|
||||
context_list.append(source)
|
||||
resource_number += 1
|
||||
if segment.answer:
|
||||
document_context_list.append(
|
||||
f"question:{segment.get_sign_content()} answer:{segment.answer}"
|
||||
)
|
||||
else:
|
||||
document_context_list.append(segment.get_sign_content())
|
||||
if self.return_resource:
|
||||
context_list = []
|
||||
resource_number = 1
|
||||
for segment in sorted_segments:
|
||||
context = {}
|
||||
document = Document.query.filter(
|
||||
Document.id == segment.document_id,
|
||||
Document.enabled == True,
|
||||
Document.archived == False,
|
||||
).first()
|
||||
if dataset and document:
|
||||
source = {
|
||||
"position": resource_number,
|
||||
"dataset_id": dataset.id,
|
||||
"dataset_name": dataset.name,
|
||||
"document_id": document.id,
|
||||
"document_name": document.name,
|
||||
"data_source_type": document.data_source_type,
|
||||
"segment_id": segment.id,
|
||||
"retriever_from": self.retriever_from,
|
||||
"score": document_score_list.get(segment.index_node_id, None),
|
||||
}
|
||||
if self.retriever_from == "dev":
|
||||
source["hit_count"] = segment.hit_count
|
||||
source["word_count"] = segment.word_count
|
||||
source["segment_position"] = segment.position
|
||||
source["index_node_hash"] = segment.index_node_hash
|
||||
if segment.answer:
|
||||
source["content"] = f"question:{segment.content} \nanswer:{segment.answer}"
|
||||
else:
|
||||
source["content"] = segment.content
|
||||
context_list.append(source)
|
||||
resource_number += 1
|
||||
|
||||
for hit_callback in self.hit_callbacks:
|
||||
hit_callback.return_retriever_resource_info(context_list)
|
||||
for hit_callback in self.hit_callbacks:
|
||||
hit_callback.return_retriever_resource_info(context_list)
|
||||
|
||||
return str("\n".join(document_context_list))
|
||||
return str("\n".join(document_context_list))
|
||||
|
|
|
@ -79,8 +79,9 @@ class KnowledgeRetrievalNode(BaseNode):
|
|||
|
||||
results = (
|
||||
db.session.query(Dataset)
|
||||
.join(subquery, Dataset.id == subquery.c.dataset_id)
|
||||
.outerjoin(subquery, Dataset.id == subquery.c.dataset_id)
|
||||
.filter(Dataset.tenant_id == self.tenant_id, Dataset.id.in_(dataset_ids))
|
||||
.filter((subquery.c.available_document_count > 0) | (Dataset.provider == "external"))
|
||||
.all()
|
||||
)
|
||||
|
||||
|
@ -121,10 +122,13 @@ class KnowledgeRetrievalNode(BaseNode):
|
|||
)
|
||||
elif node_data.retrieval_mode == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE.value:
|
||||
if node_data.multiple_retrieval_config.reranking_mode == "reranking_model":
|
||||
reranking_model = {
|
||||
"reranking_provider_name": node_data.multiple_retrieval_config.reranking_model.provider,
|
||||
"reranking_model_name": node_data.multiple_retrieval_config.reranking_model.model,
|
||||
}
|
||||
if node_data.multiple_retrieval_config.reranking_model:
|
||||
reranking_model = {
|
||||
"reranking_provider_name": node_data.multiple_retrieval_config.reranking_model.provider,
|
||||
"reranking_model_name": node_data.multiple_retrieval_config.reranking_model.model,
|
||||
}
|
||||
else:
|
||||
reranking_model = None
|
||||
weights = None
|
||||
elif node_data.multiple_retrieval_config.reranking_mode == "weighted_score":
|
||||
reranking_model = None
|
||||
|
|
|
@ -234,6 +234,7 @@ class DatasetService:
|
|||
dataset.name = data.get("name", dataset.name)
|
||||
dataset.description = data.get("description", "")
|
||||
external_knowledge_id = data.get("external_knowledge_id", None)
|
||||
dataset.permission = data.get("permission")
|
||||
db.session.add(dataset)
|
||||
if not external_knowledge_id:
|
||||
raise ValueError("External knowledge id is required.")
|
||||
|
|
45
api/services/knowledge_service.py
Normal file
45
api/services/knowledge_service.py
Normal file
|
@ -0,0 +1,45 @@
|
|||
import boto3
|
||||
|
||||
from configs import dify_config
|
||||
|
||||
|
||||
class ExternalDatasetTestService:
|
||||
# this service is only for internal testing
|
||||
@staticmethod
|
||||
def knowledge_retrieval(retrieval_setting: dict, query: str, knowledge_id: str):
|
||||
# get bedrock client
|
||||
client = boto3.client(
|
||||
"bedrock-agent-runtime",
|
||||
aws_secret_access_key=dify_config.AWS_SECRET_ACCESS_KEY,
|
||||
aws_access_key_id=dify_config.AWS_ACCESS_KEY_ID,
|
||||
# example: us-east-1
|
||||
region_name="us-east-1",
|
||||
)
|
||||
# fetch external knowledge retrieval
|
||||
response = client.retrieve(
|
||||
knowledgeBaseId=knowledge_id,
|
||||
retrievalConfiguration={
|
||||
"vectorSearchConfiguration": {
|
||||
"numberOfResults": retrieval_setting.get("top_k"),
|
||||
"overrideSearchType": "HYBRID",
|
||||
}
|
||||
},
|
||||
retrievalQuery={"text": query},
|
||||
)
|
||||
# parse response
|
||||
results = []
|
||||
if response.get("ResponseMetadata") and response.get("ResponseMetadata").get("HTTPStatusCode") == 200:
|
||||
if response.get("retrievalResults"):
|
||||
retrieval_results = response.get("retrievalResults")
|
||||
for retrieval_result in retrieval_results:
|
||||
# filter out results with score less than threshold
|
||||
if retrieval_result.get("score") < retrieval_setting.get("score_threshold", 0.0):
|
||||
continue
|
||||
result = {
|
||||
"metadata": retrieval_result.get("metadata"),
|
||||
"score": retrieval_result.get("score"),
|
||||
"title": retrieval_result.get("metadata").get("x-amz-bedrock-kb-source-uri"),
|
||||
"content": retrieval_result.get("content").get("text"),
|
||||
}
|
||||
results.append(result)
|
||||
return {"records": results}
|
Loading…
Reference in New Issue
Block a user