mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
feat: add baichuan prompt (#985)
This commit is contained in:
parent
9b247fccd4
commit
2c30d19cbe
|
@ -130,13 +130,12 @@ class Completion:
|
||||||
fake_response = agent_execute_result.output
|
fake_response = agent_execute_result.output
|
||||||
|
|
||||||
# get llm prompt
|
# get llm prompt
|
||||||
prompt_messages, stop_words = cls.get_main_llm_prompt(
|
prompt_messages, stop_words = model_instance.get_prompt(
|
||||||
mode=mode,
|
mode=mode,
|
||||||
model=app_model_config.model_dict,
|
|
||||||
pre_prompt=app_model_config.pre_prompt,
|
pre_prompt=app_model_config.pre_prompt,
|
||||||
query=query,
|
|
||||||
inputs=inputs,
|
inputs=inputs,
|
||||||
agent_execute_result=agent_execute_result,
|
query=query,
|
||||||
|
context=agent_execute_result.output if agent_execute_result else None,
|
||||||
memory=memory
|
memory=memory
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -154,113 +153,6 @@ class Completion:
|
||||||
|
|
||||||
return response
|
return response
|
||||||
|
|
||||||
@classmethod
|
|
||||||
def get_main_llm_prompt(cls, mode: str, model: dict,
|
|
||||||
pre_prompt: str, query: str, inputs: dict,
|
|
||||||
agent_execute_result: Optional[AgentExecuteResult],
|
|
||||||
memory: Optional[ReadOnlyConversationTokenDBBufferSharedMemory]) -> \
|
|
||||||
Tuple[List[PromptMessage], Optional[List[str]]]:
|
|
||||||
if mode == 'completion':
|
|
||||||
prompt_template = JinjaPromptTemplate.from_template(
|
|
||||||
template=("""Use the following context as your learned knowledge, inside <context></context> XML tags.
|
|
||||||
|
|
||||||
<context>
|
|
||||||
{{context}}
|
|
||||||
</context>
|
|
||||||
|
|
||||||
When answer to user:
|
|
||||||
- If you don't know, just say that you don't know.
|
|
||||||
- If you don't know when you are not sure, ask for clarification.
|
|
||||||
Avoid mentioning that you obtained the information from the context.
|
|
||||||
And answer according to the language of the user's question.
|
|
||||||
""" if agent_execute_result else "")
|
|
||||||
+ (pre_prompt + "\n" if pre_prompt else "")
|
|
||||||
+ "{{query}}\n"
|
|
||||||
)
|
|
||||||
|
|
||||||
if agent_execute_result:
|
|
||||||
inputs['context'] = agent_execute_result.output
|
|
||||||
|
|
||||||
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
|
|
||||||
prompt_content = prompt_template.format(
|
|
||||||
query=query,
|
|
||||||
**prompt_inputs
|
|
||||||
)
|
|
||||||
|
|
||||||
return [PromptMessage(content=prompt_content)], None
|
|
||||||
else:
|
|
||||||
messages: List[BaseMessage] = []
|
|
||||||
|
|
||||||
human_inputs = {
|
|
||||||
"query": query
|
|
||||||
}
|
|
||||||
|
|
||||||
human_message_prompt = ""
|
|
||||||
|
|
||||||
if pre_prompt:
|
|
||||||
pre_prompt_inputs = {k: inputs[k] for k in
|
|
||||||
JinjaPromptTemplate.from_template(template=pre_prompt).input_variables
|
|
||||||
if k in inputs}
|
|
||||||
|
|
||||||
if pre_prompt_inputs:
|
|
||||||
human_inputs.update(pre_prompt_inputs)
|
|
||||||
|
|
||||||
if agent_execute_result:
|
|
||||||
human_inputs['context'] = agent_execute_result.output
|
|
||||||
human_message_prompt += """Use the following context as your learned knowledge, inside <context></context> XML tags.
|
|
||||||
|
|
||||||
<context>
|
|
||||||
{{context}}
|
|
||||||
</context>
|
|
||||||
|
|
||||||
When answer to user:
|
|
||||||
- If you don't know, just say that you don't know.
|
|
||||||
- If you don't know when you are not sure, ask for clarification.
|
|
||||||
Avoid mentioning that you obtained the information from the context.
|
|
||||||
And answer according to the language of the user's question.
|
|
||||||
"""
|
|
||||||
|
|
||||||
if pre_prompt:
|
|
||||||
human_message_prompt += pre_prompt
|
|
||||||
|
|
||||||
query_prompt = "\n\nHuman: {{query}}\n\nAssistant: "
|
|
||||||
|
|
||||||
if memory:
|
|
||||||
# append chat histories
|
|
||||||
tmp_human_message = PromptBuilder.to_human_message(
|
|
||||||
prompt_content=human_message_prompt + query_prompt,
|
|
||||||
inputs=human_inputs
|
|
||||||
)
|
|
||||||
|
|
||||||
if memory.model_instance.model_rules.max_tokens.max:
|
|
||||||
curr_message_tokens = memory.model_instance.get_num_tokens(to_prompt_messages([tmp_human_message]))
|
|
||||||
max_tokens = model.get("completion_params").get('max_tokens')
|
|
||||||
rest_tokens = memory.model_instance.model_rules.max_tokens.max - max_tokens - curr_message_tokens
|
|
||||||
rest_tokens = max(rest_tokens, 0)
|
|
||||||
else:
|
|
||||||
rest_tokens = 2000
|
|
||||||
|
|
||||||
histories = cls.get_history_messages_from_memory(memory, rest_tokens)
|
|
||||||
human_message_prompt += "\n\n" if human_message_prompt else ""
|
|
||||||
human_message_prompt += "Here is the chat histories between human and assistant, " \
|
|
||||||
"inside <histories></histories> XML tags.\n\n<histories>\n"
|
|
||||||
human_message_prompt += histories + "\n</histories>"
|
|
||||||
|
|
||||||
human_message_prompt += query_prompt
|
|
||||||
|
|
||||||
# construct main prompt
|
|
||||||
human_message = PromptBuilder.to_human_message(
|
|
||||||
prompt_content=human_message_prompt,
|
|
||||||
inputs=human_inputs
|
|
||||||
)
|
|
||||||
|
|
||||||
messages.append(human_message)
|
|
||||||
|
|
||||||
for message in messages:
|
|
||||||
message.content = re.sub(r'<\|.*?\|>', '', message.content)
|
|
||||||
|
|
||||||
return to_prompt_messages(messages), ['\nHuman:', '</histories>']
|
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
|
def get_history_messages_from_memory(cls, memory: ReadOnlyConversationTokenDBBufferSharedMemory,
|
||||||
max_token_limit: int) -> str:
|
max_token_limit: int) -> str:
|
||||||
|
@ -307,13 +199,12 @@ And answer according to the language of the user's question.
|
||||||
max_tokens = 0
|
max_tokens = 0
|
||||||
|
|
||||||
# get prompt without memory and context
|
# get prompt without memory and context
|
||||||
prompt_messages, _ = cls.get_main_llm_prompt(
|
prompt_messages, _ = model_instance.get_prompt(
|
||||||
mode=mode,
|
mode=mode,
|
||||||
model=app_model_config.model_dict,
|
|
||||||
pre_prompt=app_model_config.pre_prompt,
|
pre_prompt=app_model_config.pre_prompt,
|
||||||
query=query,
|
|
||||||
inputs=inputs,
|
inputs=inputs,
|
||||||
agent_execute_result=None,
|
query=query,
|
||||||
|
context=None,
|
||||||
memory=None
|
memory=None
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -358,13 +249,12 @@ And answer according to the language of the user's question.
|
||||||
)
|
)
|
||||||
|
|
||||||
# get llm prompt
|
# get llm prompt
|
||||||
old_prompt_messages, _ = cls.get_main_llm_prompt(
|
old_prompt_messages, _ = final_model_instance.get_prompt(
|
||||||
mode="completion",
|
mode='completion',
|
||||||
model=app_model_config.model_dict,
|
|
||||||
pre_prompt=pre_prompt,
|
pre_prompt=pre_prompt,
|
||||||
query=message.query,
|
|
||||||
inputs=message.inputs,
|
inputs=message.inputs,
|
||||||
agent_execute_result=None,
|
query=message.query,
|
||||||
|
context=None,
|
||||||
memory=None
|
memory=None
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
|
@ -1,17 +1,24 @@
|
||||||
|
import json
|
||||||
|
import os
|
||||||
|
import re
|
||||||
from abc import abstractmethod
|
from abc import abstractmethod
|
||||||
from typing import List, Optional, Any, Union
|
from typing import List, Optional, Any, Union, Tuple
|
||||||
import decimal
|
import decimal
|
||||||
|
|
||||||
from langchain.callbacks.manager import Callbacks
|
from langchain.callbacks.manager import Callbacks
|
||||||
|
from langchain.memory.chat_memory import BaseChatMemory
|
||||||
from langchain.schema import LLMResult, SystemMessage, AIMessage, HumanMessage, BaseMessage, ChatGeneration
|
from langchain.schema import LLMResult, SystemMessage, AIMessage, HumanMessage, BaseMessage, ChatGeneration
|
||||||
|
|
||||||
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, DifyStdOutCallbackHandler
|
from core.callback_handler.std_out_callback_handler import DifyStreamingStdOutCallbackHandler, DifyStdOutCallbackHandler
|
||||||
from core.model_providers.models.base import BaseProviderModel
|
from core.model_providers.models.base import BaseProviderModel
|
||||||
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult
|
from core.model_providers.models.entity.message import PromptMessage, MessageType, LLMRunResult, to_prompt_messages
|
||||||
from core.model_providers.models.entity.model_params import ModelType, ModelKwargs, ModelMode, ModelKwargsRules
|
from core.model_providers.models.entity.model_params import ModelType, ModelKwargs, ModelMode, ModelKwargsRules
|
||||||
from core.model_providers.providers.base import BaseModelProvider
|
from core.model_providers.providers.base import BaseModelProvider
|
||||||
|
from core.prompt.prompt_builder import PromptBuilder
|
||||||
|
from core.prompt.prompt_template import JinjaPromptTemplate
|
||||||
from core.third_party.langchain.llms.fake import FakeLLM
|
from core.third_party.langchain.llms.fake import FakeLLM
|
||||||
import logging
|
import logging
|
||||||
|
|
||||||
logger = logging.getLogger(__name__)
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@ -82,7 +89,8 @@ class BaseLLM(BaseProviderModel):
|
||||||
'currency': 'USD'
|
'currency': 'USD'
|
||||||
}
|
}
|
||||||
rules = self.model_provider.get_rules()
|
rules = self.model_provider.get_rules()
|
||||||
price_config = rules['price_config'][self.base_model_name] if 'price_config' in rules else default_price_config
|
price_config = rules['price_config'][
|
||||||
|
self.base_model_name] if 'price_config' in rules else default_price_config
|
||||||
price_config = {
|
price_config = {
|
||||||
'prompt': decimal.Decimal(price_config['prompt']),
|
'prompt': decimal.Decimal(price_config['prompt']),
|
||||||
'completion': decimal.Decimal(price_config['completion']),
|
'completion': decimal.Decimal(price_config['completion']),
|
||||||
|
@ -158,7 +166,8 @@ class BaseLLM(BaseProviderModel):
|
||||||
total_tokens = result.llm_output['token_usage']['total_tokens']
|
total_tokens = result.llm_output['token_usage']['total_tokens']
|
||||||
else:
|
else:
|
||||||
prompt_tokens = self.get_num_tokens(messages)
|
prompt_tokens = self.get_num_tokens(messages)
|
||||||
completion_tokens = self.get_num_tokens([PromptMessage(content=completion_content, type=MessageType.ASSISTANT)])
|
completion_tokens = self.get_num_tokens(
|
||||||
|
[PromptMessage(content=completion_content, type=MessageType.ASSISTANT)])
|
||||||
total_tokens = prompt_tokens + completion_tokens
|
total_tokens = prompt_tokens + completion_tokens
|
||||||
|
|
||||||
self.model_provider.update_last_used()
|
self.model_provider.update_last_used()
|
||||||
|
@ -293,6 +302,119 @@ class BaseLLM(BaseProviderModel):
|
||||||
def support_streaming(cls):
|
def support_streaming(cls):
|
||||||
return False
|
return False
|
||||||
|
|
||||||
|
def get_prompt(self, mode: str,
|
||||||
|
pre_prompt: str, inputs: dict,
|
||||||
|
query: str,
|
||||||
|
context: Optional[str],
|
||||||
|
memory: Optional[BaseChatMemory]) -> \
|
||||||
|
Tuple[List[PromptMessage], Optional[List[str]]]:
|
||||||
|
prompt_rules = self._read_prompt_rules_from_file(self.prompt_file_name(mode))
|
||||||
|
prompt, stops = self._get_prompt_and_stop(prompt_rules, pre_prompt, inputs, query, context, memory)
|
||||||
|
return [PromptMessage(content=prompt)], stops
|
||||||
|
|
||||||
|
def prompt_file_name(self, mode: str) -> str:
|
||||||
|
if mode == 'completion':
|
||||||
|
return 'common_completion'
|
||||||
|
else:
|
||||||
|
return 'common_chat'
|
||||||
|
|
||||||
|
def _get_prompt_and_stop(self, prompt_rules: dict, pre_prompt: str, inputs: dict,
|
||||||
|
query: str,
|
||||||
|
context: Optional[str],
|
||||||
|
memory: Optional[BaseChatMemory]) -> Tuple[str, Optional[list]]:
|
||||||
|
context_prompt_content = ''
|
||||||
|
if context and 'context_prompt' in prompt_rules:
|
||||||
|
prompt_template = JinjaPromptTemplate.from_template(template=prompt_rules['context_prompt'])
|
||||||
|
context_prompt_content = prompt_template.format(
|
||||||
|
context=context
|
||||||
|
)
|
||||||
|
|
||||||
|
pre_prompt_content = ''
|
||||||
|
if pre_prompt:
|
||||||
|
prompt_template = JinjaPromptTemplate.from_template(template=pre_prompt)
|
||||||
|
prompt_inputs = {k: inputs[k] for k in prompt_template.input_variables if k in inputs}
|
||||||
|
pre_prompt_content = prompt_template.format(
|
||||||
|
**prompt_inputs
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt = ''
|
||||||
|
for order in prompt_rules['system_prompt_orders']:
|
||||||
|
if order == 'context_prompt':
|
||||||
|
prompt += context_prompt_content
|
||||||
|
elif order == 'pre_prompt':
|
||||||
|
prompt += (pre_prompt_content + '\n\n') if pre_prompt_content else ''
|
||||||
|
|
||||||
|
query_prompt = prompt_rules['query_prompt'] if 'query_prompt' in prompt_rules else '{{query}}'
|
||||||
|
|
||||||
|
if memory and 'histories_prompt' in prompt_rules:
|
||||||
|
# append chat histories
|
||||||
|
tmp_human_message = PromptBuilder.to_human_message(
|
||||||
|
prompt_content=prompt + query_prompt,
|
||||||
|
inputs={
|
||||||
|
'query': query
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
if self.model_rules.max_tokens.max:
|
||||||
|
curr_message_tokens = self.get_num_tokens(to_prompt_messages([tmp_human_message]))
|
||||||
|
max_tokens = self.model_kwargs.max_tokens
|
||||||
|
rest_tokens = self.model_rules.max_tokens.max - max_tokens - curr_message_tokens
|
||||||
|
rest_tokens = max(rest_tokens, 0)
|
||||||
|
else:
|
||||||
|
rest_tokens = 2000
|
||||||
|
|
||||||
|
memory.human_prefix = prompt_rules['human_prefix'] if 'human_prefix' in prompt_rules else 'Human'
|
||||||
|
memory.ai_prefix = prompt_rules['assistant_prefix'] if 'assistant_prefix' in prompt_rules else 'Assistant'
|
||||||
|
|
||||||
|
histories = self._get_history_messages_from_memory(memory, rest_tokens)
|
||||||
|
prompt_template = JinjaPromptTemplate.from_template(template=prompt_rules['histories_prompt'])
|
||||||
|
histories_prompt_content = prompt_template.format(
|
||||||
|
histories=histories
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt = ''
|
||||||
|
for order in prompt_rules['system_prompt_orders']:
|
||||||
|
if order == 'context_prompt':
|
||||||
|
prompt += context_prompt_content
|
||||||
|
elif order == 'pre_prompt':
|
||||||
|
prompt += (pre_prompt_content + '\n') if pre_prompt_content else ''
|
||||||
|
elif order == 'histories_prompt':
|
||||||
|
prompt += histories_prompt_content
|
||||||
|
|
||||||
|
prompt_template = JinjaPromptTemplate.from_template(template=query_prompt)
|
||||||
|
query_prompt_content = prompt_template.format(
|
||||||
|
query=query
|
||||||
|
)
|
||||||
|
|
||||||
|
prompt += query_prompt_content
|
||||||
|
|
||||||
|
prompt = re.sub(r'<\|.*?\|>', '', prompt)
|
||||||
|
|
||||||
|
stops = prompt_rules.get('stops')
|
||||||
|
if stops is not None and len(stops) == 0:
|
||||||
|
stops = None
|
||||||
|
|
||||||
|
return prompt, stops
|
||||||
|
|
||||||
|
def _read_prompt_rules_from_file(self, prompt_name: str) -> dict:
|
||||||
|
# Get the absolute path of the subdirectory
|
||||||
|
prompt_path = os.path.join(
|
||||||
|
os.path.dirname(os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))),
|
||||||
|
'prompt/generate_prompts')
|
||||||
|
|
||||||
|
json_file_path = os.path.join(prompt_path, f'{prompt_name}.json')
|
||||||
|
# Open the JSON file and read its content
|
||||||
|
with open(json_file_path, 'r') as json_file:
|
||||||
|
return json.load(json_file)
|
||||||
|
|
||||||
|
def _get_history_messages_from_memory(self, memory: BaseChatMemory,
|
||||||
|
max_token_limit: int) -> str:
|
||||||
|
"""Get memory messages."""
|
||||||
|
memory.max_token_limit = max_token_limit
|
||||||
|
memory_key = memory.memory_variables[0]
|
||||||
|
external_context = memory.load_memory_variables({})
|
||||||
|
return external_context[memory_key]
|
||||||
|
|
||||||
def _get_prompt_from_messages(self, messages: List[PromptMessage],
|
def _get_prompt_from_messages(self, messages: List[PromptMessage],
|
||||||
model_mode: Optional[ModelMode] = None) -> Union[str | List[BaseMessage]]:
|
model_mode: Optional[ModelMode] = None) -> Union[str | List[BaseMessage]]:
|
||||||
if not model_mode:
|
if not model_mode:
|
||||||
|
|
|
@ -60,6 +60,15 @@ class HuggingfaceHubModel(BaseLLM):
|
||||||
prompts = self._get_prompt_from_messages(messages)
|
prompts = self._get_prompt_from_messages(messages)
|
||||||
return self._client.get_num_tokens(prompts)
|
return self._client.get_num_tokens(prompts)
|
||||||
|
|
||||||
|
def prompt_file_name(self, mode: str) -> str:
|
||||||
|
if 'baichuan' in self.name.lower():
|
||||||
|
if mode == 'completion':
|
||||||
|
return 'baichuan_completion'
|
||||||
|
else:
|
||||||
|
return 'baichuan_chat'
|
||||||
|
else:
|
||||||
|
return super().prompt_file_name(mode)
|
||||||
|
|
||||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||||
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
|
provider_model_kwargs = self._to_model_kwargs_input(self.model_rules, model_kwargs)
|
||||||
self.client.model_kwargs = provider_model_kwargs
|
self.client.model_kwargs = provider_model_kwargs
|
||||||
|
|
|
@ -49,6 +49,15 @@ class OpenLLMModel(BaseLLM):
|
||||||
prompts = self._get_prompt_from_messages(messages)
|
prompts = self._get_prompt_from_messages(messages)
|
||||||
return max(self._client.get_num_tokens(prompts), 0)
|
return max(self._client.get_num_tokens(prompts), 0)
|
||||||
|
|
||||||
|
def prompt_file_name(self, mode: str) -> str:
|
||||||
|
if 'baichuan' in self.name.lower():
|
||||||
|
if mode == 'completion':
|
||||||
|
return 'baichuan_completion'
|
||||||
|
else:
|
||||||
|
return 'baichuan_chat'
|
||||||
|
else:
|
||||||
|
return super().prompt_file_name(mode)
|
||||||
|
|
||||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
|
@ -59,6 +59,15 @@ class XinferenceModel(BaseLLM):
|
||||||
prompts = self._get_prompt_from_messages(messages)
|
prompts = self._get_prompt_from_messages(messages)
|
||||||
return max(self._client.get_num_tokens(prompts), 0)
|
return max(self._client.get_num_tokens(prompts), 0)
|
||||||
|
|
||||||
|
def prompt_file_name(self, mode: str) -> str:
|
||||||
|
if 'baichuan' in self.name.lower():
|
||||||
|
if mode == 'completion':
|
||||||
|
return 'baichuan_completion'
|
||||||
|
else:
|
||||||
|
return 'baichuan_chat'
|
||||||
|
else:
|
||||||
|
return super().prompt_file_name(mode)
|
||||||
|
|
||||||
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
def _set_model_kwargs(self, model_kwargs: ModelKwargs):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
13
api/core/prompt/generate_prompts/baichuan_chat.json
Normal file
13
api/core/prompt/generate_prompts/baichuan_chat.json
Normal file
|
@ -0,0 +1,13 @@
|
||||||
|
{
|
||||||
|
"human_prefix": "用户",
|
||||||
|
"assistant_prefix": "助手",
|
||||||
|
"context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n引用材料\n{{context}}\n```\n\n",
|
||||||
|
"histories_prompt": "用户和助手的历史对话内容如下:\n```\n{{histories}}\n```\n\n",
|
||||||
|
"system_prompt_orders": [
|
||||||
|
"context_prompt",
|
||||||
|
"pre_prompt",
|
||||||
|
"histories_prompt"
|
||||||
|
],
|
||||||
|
"query_prompt": "用户:{{query}}\n助手:",
|
||||||
|
"stops": ["用户:"]
|
||||||
|
}
|
|
@ -0,0 +1,9 @@
|
||||||
|
{
|
||||||
|
"context_prompt": "用户在与一个客观的助手对话。助手会尊重找到的材料,给出全面专业的解释,但不会过度演绎。同时回答中不会暴露引用的材料:\n\n```\n引用材料\n{{context}}\n```\n",
|
||||||
|
"system_prompt_orders": [
|
||||||
|
"context_prompt",
|
||||||
|
"pre_prompt"
|
||||||
|
],
|
||||||
|
"query_prompt": "{{query}}",
|
||||||
|
"stops": null
|
||||||
|
}
|
13
api/core/prompt/generate_prompts/common_chat.json
Normal file
13
api/core/prompt/generate_prompts/common_chat.json
Normal file
|
@ -0,0 +1,13 @@
|
||||||
|
{
|
||||||
|
"human_prefix": "Human",
|
||||||
|
"assistant_prefix": "Assistant",
|
||||||
|
"context_prompt": "Use the following context as your learned knowledge, inside <context></context> XML tags.\n\n<context>\n{{context}}\n</context>\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
|
||||||
|
"histories_prompt": "Here is the chat histories between human and assistant, inside <histories></histories> XML tags.\n\n<histories>\n{{histories}}\n</histories>\n\n",
|
||||||
|
"system_prompt_orders": [
|
||||||
|
"context_prompt",
|
||||||
|
"pre_prompt",
|
||||||
|
"histories_prompt"
|
||||||
|
],
|
||||||
|
"query_prompt": "Human: {{query}}\n\nAssistant: ",
|
||||||
|
"stops": ["\nHuman:", "</histories>"]
|
||||||
|
}
|
9
api/core/prompt/generate_prompts/common_completion.json
Normal file
9
api/core/prompt/generate_prompts/common_completion.json
Normal file
|
@ -0,0 +1,9 @@
|
||||||
|
{
|
||||||
|
"context_prompt": "Use the following context as your learned knowledge, inside <context></context> XML tags.\n\n<context>\n{{context}}\n</context>\n\nWhen answer to user:\n- If you don't know, just say that you don't know.\n- If you don't know when you are not sure, ask for clarification.\nAvoid mentioning that you obtained the information from the context.\nAnd answer according to the language of the user's question.\n\n",
|
||||||
|
"system_prompt_orders": [
|
||||||
|
"context_prompt",
|
||||||
|
"pre_prompt"
|
||||||
|
],
|
||||||
|
"query_prompt": "{{query}}",
|
||||||
|
"stops": null
|
||||||
|
}
|
Loading…
Reference in New Issue
Block a user