mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
add error msg for hit test (#4704)
This commit is contained in:
parent
e6f6a59f3b
commit
1b2d862973
|
@ -33,6 +33,7 @@ class RetrievalService:
|
||||||
return []
|
return []
|
||||||
all_documents = []
|
all_documents = []
|
||||||
threads = []
|
threads = []
|
||||||
|
exceptions = []
|
||||||
# retrieval_model source with keyword
|
# retrieval_model source with keyword
|
||||||
if retrival_method == 'keyword_search':
|
if retrival_method == 'keyword_search':
|
||||||
keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
|
keyword_thread = threading.Thread(target=RetrievalService.keyword_search, kwargs={
|
||||||
|
@ -40,7 +41,8 @@ class RetrievalService:
|
||||||
'dataset_id': dataset_id,
|
'dataset_id': dataset_id,
|
||||||
'query': query,
|
'query': query,
|
||||||
'top_k': top_k,
|
'top_k': top_k,
|
||||||
'all_documents': all_documents
|
'all_documents': all_documents,
|
||||||
|
'exceptions': exceptions,
|
||||||
})
|
})
|
||||||
threads.append(keyword_thread)
|
threads.append(keyword_thread)
|
||||||
keyword_thread.start()
|
keyword_thread.start()
|
||||||
|
@ -54,7 +56,8 @@ class RetrievalService:
|
||||||
'score_threshold': score_threshold,
|
'score_threshold': score_threshold,
|
||||||
'reranking_model': reranking_model,
|
'reranking_model': reranking_model,
|
||||||
'all_documents': all_documents,
|
'all_documents': all_documents,
|
||||||
'retrival_method': retrival_method
|
'retrival_method': retrival_method,
|
||||||
|
'exceptions': exceptions,
|
||||||
})
|
})
|
||||||
threads.append(embedding_thread)
|
threads.append(embedding_thread)
|
||||||
embedding_thread.start()
|
embedding_thread.start()
|
||||||
|
@ -69,7 +72,8 @@ class RetrievalService:
|
||||||
'score_threshold': score_threshold,
|
'score_threshold': score_threshold,
|
||||||
'top_k': top_k,
|
'top_k': top_k,
|
||||||
'reranking_model': reranking_model,
|
'reranking_model': reranking_model,
|
||||||
'all_documents': all_documents
|
'all_documents': all_documents,
|
||||||
|
'exceptions': exceptions,
|
||||||
})
|
})
|
||||||
threads.append(full_text_index_thread)
|
threads.append(full_text_index_thread)
|
||||||
full_text_index_thread.start()
|
full_text_index_thread.start()
|
||||||
|
@ -77,6 +81,10 @@ class RetrievalService:
|
||||||
for thread in threads:
|
for thread in threads:
|
||||||
thread.join()
|
thread.join()
|
||||||
|
|
||||||
|
if exceptions:
|
||||||
|
exception_message = ';\n'.join(exceptions)
|
||||||
|
raise Exception(exception_message)
|
||||||
|
|
||||||
if retrival_method == 'hybrid_search':
|
if retrival_method == 'hybrid_search':
|
||||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
||||||
all_documents = data_post_processor.invoke(
|
all_documents = data_post_processor.invoke(
|
||||||
|
@ -89,82 +97,91 @@ class RetrievalService:
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
def keyword_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||||
top_k: int, all_documents: list):
|
top_k: int, all_documents: list, exceptions: list):
|
||||||
with flask_app.app_context():
|
with flask_app.app_context():
|
||||||
dataset = db.session.query(Dataset).filter(
|
try:
|
||||||
Dataset.id == dataset_id
|
dataset = db.session.query(Dataset).filter(
|
||||||
).first()
|
Dataset.id == dataset_id
|
||||||
|
).first()
|
||||||
|
|
||||||
keyword = Keyword(
|
keyword = Keyword(
|
||||||
dataset=dataset
|
dataset=dataset
|
||||||
)
|
)
|
||||||
|
|
||||||
documents = keyword.search(
|
documents = keyword.search(
|
||||||
query,
|
query,
|
||||||
top_k=top_k
|
top_k=top_k
|
||||||
)
|
)
|
||||||
all_documents.extend(documents)
|
all_documents.extend(documents)
|
||||||
|
except Exception as e:
|
||||||
|
exceptions.append(str(e))
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
def embedding_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||||
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
||||||
all_documents: list, retrival_method: str):
|
all_documents: list, retrival_method: str, exceptions: list):
|
||||||
with flask_app.app_context():
|
with flask_app.app_context():
|
||||||
dataset = db.session.query(Dataset).filter(
|
try:
|
||||||
Dataset.id == dataset_id
|
dataset = db.session.query(Dataset).filter(
|
||||||
).first()
|
Dataset.id == dataset_id
|
||||||
|
).first()
|
||||||
|
|
||||||
vector = Vector(
|
vector = Vector(
|
||||||
dataset=dataset
|
dataset=dataset
|
||||||
)
|
)
|
||||||
|
|
||||||
documents = vector.search_by_vector(
|
documents = vector.search_by_vector(
|
||||||
query,
|
query,
|
||||||
search_type='similarity_score_threshold',
|
search_type='similarity_score_threshold',
|
||||||
top_k=top_k,
|
top_k=top_k,
|
||||||
score_threshold=score_threshold,
|
score_threshold=score_threshold,
|
||||||
filter={
|
filter={
|
||||||
'group_id': [dataset.id]
|
'group_id': [dataset.id]
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
if documents:
|
if documents:
|
||||||
if reranking_model and retrival_method == 'semantic_search':
|
if reranking_model and retrival_method == 'semantic_search':
|
||||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
||||||
all_documents.extend(data_post_processor.invoke(
|
all_documents.extend(data_post_processor.invoke(
|
||||||
query=query,
|
query=query,
|
||||||
documents=documents,
|
documents=documents,
|
||||||
score_threshold=score_threshold,
|
score_threshold=score_threshold,
|
||||||
top_n=len(documents)
|
top_n=len(documents)
|
||||||
))
|
))
|
||||||
else:
|
else:
|
||||||
all_documents.extend(documents)
|
all_documents.extend(documents)
|
||||||
|
except Exception as e:
|
||||||
|
exceptions.append(str(e))
|
||||||
|
|
||||||
@classmethod
|
@classmethod
|
||||||
def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
def full_text_index_search(cls, flask_app: Flask, dataset_id: str, query: str,
|
||||||
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
top_k: int, score_threshold: Optional[float], reranking_model: Optional[dict],
|
||||||
all_documents: list, retrival_method: str):
|
all_documents: list, retrival_method: str, exceptions: list):
|
||||||
with flask_app.app_context():
|
with flask_app.app_context():
|
||||||
dataset = db.session.query(Dataset).filter(
|
try:
|
||||||
Dataset.id == dataset_id
|
dataset = db.session.query(Dataset).filter(
|
||||||
).first()
|
Dataset.id == dataset_id
|
||||||
|
).first()
|
||||||
|
|
||||||
vector_processor = Vector(
|
vector_processor = Vector(
|
||||||
dataset=dataset,
|
dataset=dataset,
|
||||||
)
|
)
|
||||||
|
|
||||||
documents = vector_processor.search_by_full_text(
|
documents = vector_processor.search_by_full_text(
|
||||||
query,
|
query,
|
||||||
top_k=top_k
|
top_k=top_k
|
||||||
)
|
)
|
||||||
if documents:
|
if documents:
|
||||||
if reranking_model and retrival_method == 'full_text_search':
|
if reranking_model and retrival_method == 'full_text_search':
|
||||||
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
data_post_processor = DataPostProcessor(str(dataset.tenant_id), reranking_model, False)
|
||||||
all_documents.extend(data_post_processor.invoke(
|
all_documents.extend(data_post_processor.invoke(
|
||||||
query=query,
|
query=query,
|
||||||
documents=documents,
|
documents=documents,
|
||||||
score_threshold=score_threshold,
|
score_threshold=score_threshold,
|
||||||
top_n=len(documents)
|
top_n=len(documents)
|
||||||
))
|
))
|
||||||
else:
|
else:
|
||||||
all_documents.extend(documents)
|
all_documents.extend(documents)
|
||||||
|
except Exception as e:
|
||||||
|
exceptions.append(str(e))
|
||||||
|
|
Loading…
Reference in New Issue
Block a user