mirror of
https://github.com/langgenius/dify.git
synced 2024-11-16 11:42:29 +08:00
feat: rewrite Elasticsearch index and search code to achieve Elasticsearch vector and full-text search (#7641)
Co-authored-by: haokai <haokai@shuwen.com> Co-authored-by: crazywoola <100913391+crazywoola@users.noreply.github.com> Co-authored-by: Bowen Liang <bowenliang@apache.org> Co-authored-by: wellCh4n <wellCh4n@foxmail.com>
This commit is contained in:
parent
e7afee1176
commit
122ce41020
|
@ -13,6 +13,7 @@ from configs.middleware.storage.oci_storage_config import OCIStorageConfig
|
|||
from configs.middleware.storage.tencent_cos_storage_config import TencentCloudCOSStorageConfig
|
||||
from configs.middleware.vdb.analyticdb_config import AnalyticdbConfig
|
||||
from configs.middleware.vdb.chroma_config import ChromaConfig
|
||||
from configs.middleware.vdb.elasticsearch_config import ElasticsearchConfig
|
||||
from configs.middleware.vdb.milvus_config import MilvusConfig
|
||||
from configs.middleware.vdb.myscale_config import MyScaleConfig
|
||||
from configs.middleware.vdb.opensearch_config import OpenSearchConfig
|
||||
|
@ -200,5 +201,6 @@ class MiddlewareConfig(
|
|||
TencentVectorDBConfig,
|
||||
TiDBVectorConfig,
|
||||
WeaviateConfig,
|
||||
ElasticsearchConfig,
|
||||
):
|
||||
pass
|
||||
|
|
30
api/configs/middleware/vdb/elasticsearch_config.py
Normal file
30
api/configs/middleware/vdb/elasticsearch_config.py
Normal file
|
@ -0,0 +1,30 @@
|
|||
from typing import Optional
|
||||
|
||||
from pydantic import Field, PositiveInt
|
||||
from pydantic_settings import BaseSettings
|
||||
|
||||
|
||||
class ElasticsearchConfig(BaseSettings):
|
||||
"""
|
||||
Elasticsearch configs
|
||||
"""
|
||||
|
||||
ELASTICSEARCH_HOST: Optional[str] = Field(
|
||||
description="Elasticsearch host",
|
||||
default="127.0.0.1",
|
||||
)
|
||||
|
||||
ELASTICSEARCH_PORT: PositiveInt = Field(
|
||||
description="Elasticsearch port",
|
||||
default=9200,
|
||||
)
|
||||
|
||||
ELASTICSEARCH_USERNAME: Optional[str] = Field(
|
||||
description="Elasticsearch username",
|
||||
default="elastic",
|
||||
)
|
||||
|
||||
ELASTICSEARCH_PASSWORD: Optional[str] = Field(
|
||||
description="Elasticsearch password",
|
||||
default="elastic",
|
||||
)
|
|
@ -1,5 +1,7 @@
|
|||
import json
|
||||
from typing import Any
|
||||
import logging
|
||||
from typing import Any, Optional
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import requests
|
||||
from elasticsearch import Elasticsearch
|
||||
|
@ -7,16 +9,20 @@ from flask import current_app
|
|||
from pydantic import BaseModel, model_validator
|
||||
|
||||
from core.rag.datasource.entity.embedding import Embeddings
|
||||
from core.rag.datasource.vdb.field import Field
|
||||
from core.rag.datasource.vdb.vector_base import BaseVector
|
||||
from core.rag.datasource.vdb.vector_factory import AbstractVectorFactory
|
||||
from core.rag.datasource.vdb.vector_type import VectorType
|
||||
from core.rag.models.document import Document
|
||||
from extensions.ext_redis import redis_client
|
||||
from models.dataset import Dataset
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class ElasticSearchConfig(BaseModel):
|
||||
host: str
|
||||
port: str
|
||||
port: int
|
||||
username: str
|
||||
password: str
|
||||
|
||||
|
@ -37,12 +43,19 @@ class ElasticSearchVector(BaseVector):
|
|||
def __init__(self, index_name: str, config: ElasticSearchConfig, attributes: list):
|
||||
super().__init__(index_name.lower())
|
||||
self._client = self._init_client(config)
|
||||
self._version = self._get_version()
|
||||
self._check_version()
|
||||
self._attributes = attributes
|
||||
|
||||
def _init_client(self, config: ElasticSearchConfig) -> Elasticsearch:
|
||||
try:
|
||||
parsed_url = urlparse(config.host)
|
||||
if parsed_url.scheme in ['http', 'https']:
|
||||
hosts = f'{config.host}:{config.port}'
|
||||
else:
|
||||
hosts = f'http://{config.host}:{config.port}'
|
||||
client = Elasticsearch(
|
||||
hosts=f'{config.host}:{config.port}',
|
||||
hosts=hosts,
|
||||
basic_auth=(config.username, config.password),
|
||||
request_timeout=100000,
|
||||
retry_on_timeout=True,
|
||||
|
@ -53,42 +66,27 @@ class ElasticSearchVector(BaseVector):
|
|||
|
||||
return client
|
||||
|
||||
def _get_version(self) -> str:
|
||||
info = self._client.info()
|
||||
return info['version']['number']
|
||||
|
||||
def _check_version(self):
|
||||
if self._version < '8.0.0':
|
||||
raise ValueError("Elasticsearch vector database version must be greater than 8.0.0")
|
||||
|
||||
def get_type(self) -> str:
|
||||
return 'elasticsearch'
|
||||
|
||||
def add_texts(self, documents: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
uuids = self._get_uuids(documents)
|
||||
texts = [d.page_content for d in documents]
|
||||
metadatas = [d.metadata for d in documents]
|
||||
|
||||
if not self._client.indices.exists(index=self._collection_name):
|
||||
dim = len(embeddings[0])
|
||||
mapping = {
|
||||
"properties": {
|
||||
"text": {
|
||||
"type": "text"
|
||||
},
|
||||
"vector": {
|
||||
"type": "dense_vector",
|
||||
"index": True,
|
||||
"dims": dim,
|
||||
"similarity": "l2_norm"
|
||||
},
|
||||
}
|
||||
}
|
||||
self._client.indices.create(index=self._collection_name, mappings=mapping)
|
||||
|
||||
added_ids = []
|
||||
for i, text in enumerate(texts):
|
||||
for i in range(len(documents)):
|
||||
self._client.index(index=self._collection_name,
|
||||
id=uuids[i],
|
||||
document={
|
||||
"text": text,
|
||||
"vector": embeddings[i] if embeddings[i] else None,
|
||||
"metadata": metadatas[i] if metadatas[i] else {},
|
||||
Field.CONTENT_KEY.value: documents[i].page_content,
|
||||
Field.VECTOR.value: embeddings[i] if embeddings[i] else None,
|
||||
Field.METADATA_KEY.value: documents[i].metadata if documents[i].metadata else {}
|
||||
})
|
||||
added_ids.append(uuids[i])
|
||||
|
||||
self._client.indices.refresh(index=self._collection_name)
|
||||
return uuids
|
||||
|
||||
|
@ -116,28 +114,21 @@ class ElasticSearchVector(BaseVector):
|
|||
self._client.indices.delete(index=self._collection_name)
|
||||
|
||||
def search_by_vector(self, query_vector: list[float], **kwargs: Any) -> list[Document]:
|
||||
query_str = {
|
||||
"query": {
|
||||
"script_score": {
|
||||
"query": {
|
||||
"match_all": {}
|
||||
},
|
||||
"script": {
|
||||
"source": "cosineSimilarity(params.query_vector, 'vector') + 1.0",
|
||||
"params": {
|
||||
"query_vector": query_vector
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
top_k = kwargs.get("top_k", 10)
|
||||
knn = {
|
||||
"field": Field.VECTOR.value,
|
||||
"query_vector": query_vector,
|
||||
"k": top_k
|
||||
}
|
||||
|
||||
results = self._client.search(index=self._collection_name, body=query_str)
|
||||
results = self._client.search(index=self._collection_name, knn=knn, size=top_k)
|
||||
|
||||
docs_and_scores = []
|
||||
for hit in results['hits']['hits']:
|
||||
docs_and_scores.append(
|
||||
(Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata']), hit['_score']))
|
||||
(Document(page_content=hit['_source'][Field.CONTENT_KEY.value],
|
||||
vector=hit['_source'][Field.VECTOR.value],
|
||||
metadata=hit['_source'][Field.METADATA_KEY.value]), hit['_score']))
|
||||
|
||||
docs = []
|
||||
for doc, score in docs_and_scores:
|
||||
|
@ -146,25 +137,61 @@ class ElasticSearchVector(BaseVector):
|
|||
doc.metadata['score'] = score
|
||||
docs.append(doc)
|
||||
|
||||
# Sort the documents by score in descending order
|
||||
docs = sorted(docs, key=lambda x: x.metadata['score'], reverse=True)
|
||||
|
||||
return docs
|
||||
|
||||
def search_by_full_text(self, query: str, **kwargs: Any) -> list[Document]:
|
||||
query_str = {
|
||||
"match": {
|
||||
"text": query
|
||||
Field.CONTENT_KEY.value: query
|
||||
}
|
||||
}
|
||||
results = self._client.search(index=self._collection_name, query=query_str)
|
||||
docs = []
|
||||
for hit in results['hits']['hits']:
|
||||
docs.append(Document(page_content=hit['_source']['text'], metadata=hit['_source']['metadata']))
|
||||
docs.append(Document(
|
||||
page_content=hit['_source'][Field.CONTENT_KEY.value],
|
||||
vector=hit['_source'][Field.VECTOR.value],
|
||||
metadata=hit['_source'][Field.METADATA_KEY.value],
|
||||
))
|
||||
|
||||
return docs
|
||||
|
||||
def create(self, texts: list[Document], embeddings: list[list[float]], **kwargs):
|
||||
return self.add_texts(texts, embeddings, **kwargs)
|
||||
metadatas = [d.metadata for d in texts]
|
||||
self.create_collection(embeddings, metadatas)
|
||||
self.add_texts(texts, embeddings, **kwargs)
|
||||
|
||||
def create_collection(
|
||||
self, embeddings: list, metadatas: Optional[list[dict]] = None, index_params: Optional[dict] = None
|
||||
):
|
||||
lock_name = f'vector_indexing_lock_{self._collection_name}'
|
||||
with redis_client.lock(lock_name, timeout=20):
|
||||
collection_exist_cache_key = f'vector_indexing_{self._collection_name}'
|
||||
if redis_client.get(collection_exist_cache_key):
|
||||
logger.info(f"Collection {self._collection_name} already exists.")
|
||||
return
|
||||
|
||||
if not self._client.indices.exists(index=self._collection_name):
|
||||
dim = len(embeddings[0])
|
||||
mappings = {
|
||||
"properties": {
|
||||
Field.CONTENT_KEY.value: {"type": "text"},
|
||||
Field.VECTOR.value: { # Make sure the dimension is correct here
|
||||
"type": "dense_vector",
|
||||
"dims": dim,
|
||||
"similarity": "cosine"
|
||||
},
|
||||
Field.METADATA_KEY.value: {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"doc_id": {"type": "keyword"} # Map doc_id to keyword type
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
self._client.indices.create(index=self._collection_name, mappings=mappings)
|
||||
|
||||
redis_client.set(collection_exist_cache_key, 1, ex=3600)
|
||||
|
||||
|
||||
class ElasticSearchVectorFactory(AbstractVectorFactory):
|
||||
|
|
Loading…
Reference in New Issue
Block a user