dify/api/services/dataset_service.py

1634 lines
72 KiB
Python
Raw Normal View History

import datetime
2023-05-15 08:51:32 +08:00
import json
import logging
import random
import time
import uuid
from typing import Optional
2023-07-16 13:21:56 +08:00
from flask_login import current_user
from sqlalchemy import func
from configs import dify_config
from core.errors.error import LLMBadRequestError, ProviderTokenNotInitError
from core.model_manager import ModelManager
from core.model_runtime.entities.model_entities import ModelType
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.models.document import Document as RAGDocument
from core.rag.retrieval.retrival_methods import RetrievalMethod
2023-05-15 08:51:32 +08:00
from events.dataset_event import dataset_was_deleted
from events.document_event import document_was_deleted
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from libs import helper
from models.account import Account, TenantAccountRole
from models.dataset import (
AppDatasetJoin,
Dataset,
DatasetCollectionBinding,
DatasetPermission,
DatasetProcessRule,
DatasetQuery,
Document,
DocumentSegment,
)
2023-05-15 08:51:32 +08:00
from models.model import UploadFile
from models.source import DataSourceOauthBinding
2023-05-15 08:51:32 +08:00
from services.errors.account import NoPermissionError
from services.errors.dataset import DatasetNameDuplicateError
2023-05-15 08:51:32 +08:00
from services.errors.document import DocumentIndexingError
from services.errors.file import FileNotExistsError
2024-03-03 12:45:06 +08:00
from services.feature_service import FeatureModel, FeatureService
from services.tag_service import TagService
from services.vector_service import VectorService
from tasks.clean_notion_document_task import clean_notion_document_task
2023-05-23 22:54:59 +08:00
from tasks.deal_dataset_vector_index_task import deal_dataset_vector_index_task
from tasks.delete_segment_from_index_task import delete_segment_from_index_task
from tasks.disable_segment_from_index_task import disable_segment_from_index_task
2023-05-15 08:51:32 +08:00
from tasks.document_indexing_task import document_indexing_task
from tasks.document_indexing_update_task import document_indexing_update_task
from tasks.duplicate_document_indexing_task import duplicate_document_indexing_task
from tasks.recover_document_indexing_task import recover_document_indexing_task
from tasks.retry_document_indexing_task import retry_document_indexing_task
from tasks.sync_website_document_indexing_task import sync_website_document_indexing_task
2023-05-15 08:51:32 +08:00
class DatasetService:
@staticmethod
def get_datasets(page, per_page, provider="vendor", tenant_id=None, user=None, search=None, tag_ids=None):
query = Dataset.query.filter(Dataset.provider == provider, Dataset.tenant_id == tenant_id).order_by(
Dataset.created_at.desc()
)
2023-05-15 08:51:32 +08:00
if user:
# get permitted dataset ids
dataset_permission = DatasetPermission.query.filter_by(
account_id=user.id,
tenant_id=tenant_id
).all()
permitted_dataset_ids = {dp.dataset_id for dp in dataset_permission} if dataset_permission else None
if user.current_role == TenantAccountRole.DATASET_OPERATOR:
# only show datasets that the user has permission to access
if permitted_dataset_ids:
query = query.filter(Dataset.id.in_(permitted_dataset_ids))
else:
return [], 0
else:
# show all datasets that the user has permission to access
if permitted_dataset_ids:
query = query.filter(
db.or_(
Dataset.permission == 'all_team_members',
db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id),
db.and_(Dataset.permission == 'partial_members', Dataset.id.in_(permitted_dataset_ids))
)
)
else:
query = query.filter(
db.or_(
Dataset.permission == 'all_team_members',
db.and_(Dataset.permission == 'only_me', Dataset.created_by == user.id)
)
)
2023-05-15 08:51:32 +08:00
else:
# if no user, only show datasets that are shared with all team members
query = query.filter(Dataset.permission == 'all_team_members')
if search:
query = query.filter(Dataset.name.ilike(f'%{search}%'))
if tag_ids:
target_ids = TagService.get_target_ids_by_tag_ids('knowledge', tenant_id, tag_ids)
if target_ids:
query = query.filter(Dataset.id.in_(target_ids))
else:
return [], 0
datasets = query.paginate(
2023-05-15 08:51:32 +08:00
page=page,
per_page=per_page,
max_per_page=100,
error_out=False
)
return datasets.items, datasets.total
@staticmethod
def get_process_rules(dataset_id):
# get the latest process rule
dataset_process_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.dataset_id == dataset_id). \
order_by(DatasetProcessRule.created_at.desc()). \
limit(1). \
one_or_none()
if dataset_process_rule:
mode = dataset_process_rule.mode
rules = dataset_process_rule.rules_dict
else:
mode = DocumentService.DEFAULT_RULES['mode']
rules = DocumentService.DEFAULT_RULES['rules']
return {
'mode': mode,
'rules': rules
}
@staticmethod
def get_datasets_by_ids(ids, tenant_id):
datasets = Dataset.query.filter(
Dataset.id.in_(ids),
Dataset.tenant_id == tenant_id
).paginate(
page=1, per_page=len(ids), max_per_page=len(ids), error_out=False
)
2023-05-15 08:51:32 +08:00
return datasets.items, datasets.total
@staticmethod
def create_empty_dataset(tenant_id: str, name: str, indexing_technique: Optional[str], account: Account):
# check if dataset name already exists
if Dataset.query.filter_by(name=name, tenant_id=tenant_id).first():
raise DatasetNameDuplicateError(
f'Dataset with name {name} already exists.'
)
embedding_model = None
if indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_default_model_instance(
tenant_id=tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
2023-06-19 16:32:03 +08:00
dataset = Dataset(name=name, indexing_technique=indexing_technique)
2023-05-15 08:51:32 +08:00
# dataset = Dataset(name=name, provider=provider, config=config)
dataset.created_by = account.id
dataset.updated_by = account.id
dataset.tenant_id = tenant_id
dataset.embedding_model_provider = embedding_model.provider if embedding_model else None
dataset.embedding_model = embedding_model.model if embedding_model else None
2023-05-15 08:51:32 +08:00
db.session.add(dataset)
db.session.commit()
return dataset
@staticmethod
def get_dataset(dataset_id):
return Dataset.query.filter_by(
2023-05-15 08:51:32 +08:00
id=dataset_id
).first()
@staticmethod
def check_dataset_model_setting(dataset):
if dataset.indexing_technique == 'high_quality':
try:
model_manager = ModelManager()
model_manager.get_model_instance(
tenant_id=dataset.tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(
f"The dataset in unavailable, due to: "
f"{ex.description}"
)
2023-05-15 08:51:32 +08:00
@staticmethod
def update_dataset(dataset_id, data, user):
data.pop('partial_member_list', None)
filtered_data = {k: v for k, v in data.items() if v is not None or k == 'description'}
2023-05-15 08:51:32 +08:00
dataset = DatasetService.get_dataset(dataset_id)
DatasetService.check_dataset_permission(dataset, user)
action = None
2023-05-23 22:54:59 +08:00
if dataset.indexing_technique != data['indexing_technique']:
# if update indexing_technique
if data['indexing_technique'] == 'economy':
action = 'remove'
filtered_data['embedding_model'] = None
filtered_data['embedding_model_provider'] = None
filtered_data['collection_binding_id'] = None
2023-05-23 22:54:59 +08:00
elif data['indexing_technique'] == 'high_quality':
action = 'add'
# get embedding model setting
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data['embedding_model_provider'],
model_type=ModelType.TEXT_EMBEDDING,
model=data['embedding_model']
)
filtered_data['embedding_model'] = embedding_model.model
filtered_data['embedding_model_provider'] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider,
embedding_model.model
)
filtered_data['collection_binding_id'] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
else:
if data['embedding_model_provider'] != dataset.embedding_model_provider or \
data['embedding_model'] != dataset.embedding_model:
action = 'update'
try:
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=data['embedding_model_provider'],
model_type=ModelType.TEXT_EMBEDDING,
model=data['embedding_model']
)
filtered_data['embedding_model'] = embedding_model.model
filtered_data['embedding_model_provider'] = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider,
embedding_model.model
)
filtered_data['collection_binding_id'] = dataset_collection_binding.id
except LLMBadRequestError:
raise ValueError(
"No Embedding Model available. Please configure a valid provider "
"in the Settings -> Model Provider."
)
except ProviderTokenNotInitError as ex:
raise ValueError(ex.description)
2023-05-15 08:51:32 +08:00
filtered_data['updated_by'] = user.id
filtered_data['updated_at'] = datetime.datetime.now()
# update Retrieval model
filtered_data['retrieval_model'] = data['retrieval_model']
2023-05-15 08:51:32 +08:00
dataset.query.filter_by(id=dataset_id).update(filtered_data)
db.session.commit()
if action:
deal_dataset_vector_index_task.delay(dataset_id, action)
2023-05-15 08:51:32 +08:00
return dataset
@staticmethod
def delete_dataset(dataset_id, user):
dataset = DatasetService.get_dataset(dataset_id)
if dataset is None:
return False
DatasetService.check_dataset_permission(dataset, user)
dataset_was_deleted.send(dataset)
db.session.delete(dataset)
db.session.commit()
return True
@staticmethod
def dataset_use_check(dataset_id) -> bool:
count = AppDatasetJoin.query.filter_by(dataset_id=dataset_id).count()
if count > 0:
return True
return False
2023-05-15 08:51:32 +08:00
@staticmethod
def check_dataset_permission(dataset, user):
if dataset.tenant_id != user.current_tenant_id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}'
)
2023-05-15 08:51:32 +08:00
raise NoPermissionError(
'You do not have permission to access this dataset.'
)
2023-05-15 08:51:32 +08:00
if dataset.permission == 'only_me' and dataset.created_by != user.id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}'
)
2023-05-15 08:51:32 +08:00
raise NoPermissionError(
'You do not have permission to access this dataset.'
)
if dataset.permission == 'partial_members':
user_permission = DatasetPermission.query.filter_by(
dataset_id=dataset.id, account_id=user.id
).first()
if not user_permission and dataset.tenant_id != user.current_tenant_id and dataset.created_by != user.id:
logging.debug(
f'User {user.id} does not have permission to access dataset {dataset.id}'
)
raise NoPermissionError(
'You do not have permission to access this dataset.'
)
@staticmethod
def check_dataset_operator_permission(user: Account = None, dataset: Dataset = None):
if dataset.permission == 'only_me':
if dataset.created_by != user.id:
raise NoPermissionError('You do not have permission to access this dataset.')
elif dataset.permission == 'partial_members':
if not any(
dp.dataset_id == dataset.id for dp in DatasetPermission.query.filter_by(account_id=user.id).all()
):
raise NoPermissionError('You do not have permission to access this dataset.')
2023-05-15 08:51:32 +08:00
@staticmethod
def get_dataset_queries(dataset_id: str, page: int, per_page: int):
dataset_queries = DatasetQuery.query.filter_by(dataset_id=dataset_id) \
.order_by(db.desc(DatasetQuery.created_at)) \
.paginate(
page=page, per_page=per_page, max_per_page=100, error_out=False
)
return dataset_queries.items, dataset_queries.total
@staticmethod
def get_related_apps(dataset_id: str):
return AppDatasetJoin.query.filter(AppDatasetJoin.dataset_id == dataset_id) \
.order_by(db.desc(AppDatasetJoin.created_at)).all()
class DocumentService:
DEFAULT_RULES = {
'mode': 'custom',
'rules': {
'pre_processing_rules': [
{'id': 'remove_extra_spaces', 'enabled': True},
{'id': 'remove_urls_emails', 'enabled': False}
],
'segmentation': {
'delimiter': '\n',
'max_tokens': 500,
'chunk_overlap': 50
2023-05-15 08:51:32 +08:00
}
}
}
DOCUMENT_METADATA_SCHEMA = {
"book": {
"title": str,
"language": str,
"author": str,
"publisher": str,
"publication_date": str,
"isbn": str,
"category": str,
},
"web_page": {
"title": str,
"url": str,
"language": str,
"publish_date": str,
"author/publisher": str,
"topic/keywords": str,
"description": str,
},
"paper": {
"title": str,
"language": str,
"author": str,
"publish_date": str,
"journal/conference_name": str,
"volume/issue/page_numbers": str,
"doi": str,
"topic/keywords": str,
"abstract": str,
},
"social_media_post": {
"platform": str,
"author/username": str,
"publish_date": str,
"post_url": str,
"topic/tags": str,
},
"wikipedia_entry": {
"title": str,
"language": str,
"web_page_url": str,
"last_edit_date": str,
"editor/contributor": str,
"summary/introduction": str,
},
"personal_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"tags/category": str,
},
"business_document": {
"title": str,
"author": str,
"creation_date": str,
"last_modified_date": str,
"document_type": str,
"department/team": str,
},
"im_chat_log": {
"chat_platform": str,
"chat_participants/group_name": str,
"start_date": str,
"end_date": str,
"summary": str,
},
"synced_from_notion": {
"title": str,
"language": str,
"author/creator": str,
"creation_date": str,
"last_modified_date": str,
"notion_page_link": str,
"category/tags": str,
"description": str,
},
"synced_from_github": {
"repository_name": str,
"repository_description": str,
"repository_owner/organization": str,
"code_filename": str,
"code_file_path": str,
"programming_language": str,
"github_link": str,
"open_source_license": str,
"commit_date": str,
"commit_author": str,
},
"others": dict
2023-05-15 08:51:32 +08:00
}
@staticmethod
def get_document(dataset_id: str, document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(
Document.id == document_id,
Document.dataset_id == dataset_id
).first()
return document
@staticmethod
def get_document_by_id(document_id: str) -> Optional[Document]:
document = db.session.query(Document).filter(
Document.id == document_id
).first()
return document
2023-05-15 08:51:32 +08:00
@staticmethod
def get_document_by_dataset_id(dataset_id: str) -> list[Document]:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset_id,
Document.enabled == True
).all()
return documents
@staticmethod
def get_error_documents_by_dataset_id(dataset_id: str) -> list[Document]:
documents = db.session.query(Document).filter(
Document.dataset_id == dataset_id,
Document.indexing_status.in_(['error', 'paused'])
).all()
return documents
@staticmethod
def get_batch_documents(dataset_id: str, batch: str) -> list[Document]:
documents = db.session.query(Document).filter(
Document.batch == batch,
Document.dataset_id == dataset_id,
Document.tenant_id == current_user.current_tenant_id
).all()
return documents
@staticmethod
2023-05-15 08:51:32 +08:00
def get_document_file_detail(file_id: str):
file_detail = db.session.query(UploadFile). \
filter(UploadFile.id == file_id). \
one_or_none()
return file_detail
@staticmethod
def check_archived(document):
if document.archived:
return True
else:
return False
@staticmethod
def delete_document(document):
# trigger document_was_deleted signal
file_id = None
if document.data_source_type == 'upload_file':
if document.data_source_info:
data_source_info = document.data_source_info_dict
if data_source_info and 'upload_file_id' in data_source_info:
file_id = data_source_info['upload_file_id']
document_was_deleted.send(document.id, dataset_id=document.dataset_id,
doc_form=document.doc_form, file_id=file_id)
2023-05-15 08:51:32 +08:00
db.session.delete(document)
db.session.commit()
2024-06-04 20:07:40 +08:00
@staticmethod
def rename_document(dataset_id: str, document_id: str, name: str) -> Document:
dataset = DatasetService.get_dataset(dataset_id)
if not dataset:
raise ValueError('Dataset not found.')
document = DocumentService.get_document(dataset_id, document_id)
if not document:
raise ValueError('Document not found.')
if document.tenant_id != current_user.current_tenant_id:
raise ValueError('No permission.')
document.name = name
db.session.add(document)
db.session.commit()
return document
2023-05-15 08:51:32 +08:00
@staticmethod
def pause_document(document):
if document.indexing_status not in ["waiting", "parsing", "cleaning", "splitting", "indexing"]:
raise DocumentIndexingError()
# update document to be paused
document.is_paused = True
document.paused_by = current_user.id
document.paused_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
2023-05-15 08:51:32 +08:00
db.session.add(document)
db.session.commit()
# set document paused flag
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
redis_client.setnx(indexing_cache_key, "True")
@staticmethod
def recover_document(document):
if not document.is_paused:
raise DocumentIndexingError()
# update document to be recover
document.is_paused = False
document.paused_by = None
document.paused_at = None
2023-05-15 08:51:32 +08:00
db.session.add(document)
db.session.commit()
# delete paused flag
indexing_cache_key = 'document_{}_is_paused'.format(document.id)
redis_client.delete(indexing_cache_key)
# trigger async task
recover_document_indexing_task.delay(document.dataset_id, document.id)
2023-05-15 08:51:32 +08:00
@staticmethod
def retry_document(dataset_id: str, documents: list[Document]):
for document in documents:
# add retry flag
retry_indexing_cache_key = 'document_{}_is_retried'.format(document.id)
cache_result = redis_client.get(retry_indexing_cache_key)
if cache_result is not None:
raise ValueError("Document is being retried, please try again later")
# retry document indexing
document.indexing_status = 'waiting'
db.session.add(document)
db.session.commit()
redis_client.setex(retry_indexing_cache_key, 600, 1)
# trigger async task
document_ids = [document.id for document in documents]
retry_document_indexing_task.delay(dataset_id, document_ids)
2023-05-15 08:51:32 +08:00
@staticmethod
def sync_website_document(dataset_id: str, document: Document):
# add sync flag
sync_indexing_cache_key = 'document_{}_is_sync'.format(document.id)
cache_result = redis_client.get(sync_indexing_cache_key)
if cache_result is not None:
raise ValueError("Document is being synced, please try again later")
# sync document indexing
document.indexing_status = 'waiting'
data_source_info = document.data_source_info_dict
data_source_info['mode'] = 'scrape'
document.data_source_info = json.dumps(data_source_info, ensure_ascii=False)
db.session.add(document)
db.session.commit()
redis_client.setex(sync_indexing_cache_key, 600, 1)
sync_website_document_indexing_task.delay(dataset_id, document.id)
@staticmethod
2023-05-15 08:51:32 +08:00
def get_documents_position(dataset_id):
document = Document.query.filter_by(dataset_id=dataset_id).order_by(Document.position.desc()).first()
if document:
return document.position + 1
2023-05-15 08:51:32 +08:00
else:
return 1
@staticmethod
def save_document_with_dataset_id(
dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'
):
2023-07-16 13:21:56 +08:00
# check document limit
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
if 'original_document_id' not in document_data or not document_data['original_document_id']:
count = 0
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
count = len(upload_file_list)
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
count = count + len(notion_info['pages'])
elif document_data["data_source"]["type"] == "website_crawl":
website_info = document_data["data_source"]['info_list']['website_info_list']
count = len(website_info['urls'])
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
2024-03-03 12:45:06 +08:00
DocumentService.check_documents_upload_quota(count, features)
2023-06-19 16:32:03 +08:00
# if dataset is empty, update dataset data_source_type
if not dataset.data_source_type:
dataset.data_source_type = document_data["data_source"]["type"]
2023-05-15 08:51:32 +08:00
if not dataset.indexing_technique:
if 'indexing_technique' not in document_data \
or document_data['indexing_technique'] not in Dataset.INDEXING_TECHNIQUE_LIST:
2023-05-15 08:51:32 +08:00
raise ValueError("Indexing technique is required")
dataset.indexing_technique = document_data["indexing_technique"]
if document_data["indexing_technique"] == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
dataset.embedding_model = embedding_model.model
dataset.embedding_model_provider = embedding_model.provider
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider,
embedding_model.model
)
dataset.collection_binding_id = dataset_collection_binding.id
if not dataset.retrieval_model:
default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
2023-05-15 08:51:32 +08:00
dataset.retrieval_model = document_data.get('retrieval_model') if document_data.get(
'retrieval_model'
) else default_retrieval_model
documents = []
batch = time.strftime('%Y%m%d%H%M%S') + str(random.randint(100000, 999999))
if document_data.get("original_document_id"):
document = DocumentService.update_document_with_dataset_id(dataset, document_data, account)
documents.append(document)
else:
# save process rule
if not dataset_process_rule:
process_rule = document_data["process_rule"]
if process_rule["mode"] == "custom":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(process_rule["rules"]),
created_by=account.id
)
elif process_rule["mode"] == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id
)
db.session.add(dataset_process_rule)
db.session.commit()
position = DocumentService.get_documents_position(dataset.id)
document_ids = []
duplicate_document_ids = []
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
for file_id in upload_file_list:
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == dataset.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
# check duplicate
if document_data.get('duplicate', False):
document = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type='upload_file',
enabled=True,
name=file_name
).first()
if document:
document.dataset_process_rule_id = dataset_process_rule.id
document.updated_at = datetime.datetime.utcnow()
document.created_from = created_from
document.doc_form = document_data['doc_form']
document.doc_language = document_data['doc_language']
document.data_source_info = json.dumps(data_source_info)
document.batch = batch
document.indexing_status = 'waiting'
db.session.add(document)
documents.append(document)
duplicate_document_ids.append(document.id)
continue
document = DocumentService.build_document(
dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, file_name, batch
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
exist_page_ids = []
exist_document = {}
documents = Document.query.filter_by(
dataset_id=dataset.id,
tenant_id=current_user.current_tenant_id,
data_source_type='notion_import',
enabled=True
).all()
if documents:
for document in documents:
data_source_info = json.loads(document.data_source_info)
exist_page_ids.append(data_source_info['notion_page_id'])
exist_document[data_source_info['notion_page_id']] = document.id
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceOauthBinding.query.filter(
db.and_(
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
DataSourceOauthBinding.provider == 'notion',
DataSourceOauthBinding.disabled == False,
DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
if page['page_id'] not in exist_page_ids:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page['page_id'],
"notion_page_icon": page['page_icon'],
"type": page['type']
}
document = DocumentService.build_document(
dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, page['page_name'], batch
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
else:
exist_document.pop(page['page_id'])
# delete not selected documents
if len(exist_document) > 0:
clean_notion_document_task.delay(list(exist_document.values()), dataset.id)
elif document_data["data_source"]["type"] == "website_crawl":
website_info = document_data["data_source"]['info_list']['website_info_list']
urls = website_info['urls']
for url in urls:
data_source_info = {
'url': url,
'provider': website_info['provider'],
'job_id': website_info['job_id'],
'only_main_content': website_info.get('only_main_content', False),
'mode': 'crawl',
}
document = DocumentService.build_document(
dataset, dataset_process_rule.id,
document_data["data_source"]["type"],
document_data["doc_form"],
document_data["doc_language"],
data_source_info, created_from, position,
account, url, batch
)
db.session.add(document)
db.session.flush()
document_ids.append(document.id)
documents.append(document)
position += 1
db.session.commit()
# trigger async task
if document_ids:
document_indexing_task.delay(dataset.id, document_ids)
if duplicate_document_ids:
duplicate_document_indexing_task.delay(dataset.id, duplicate_document_ids)
return documents, batch
2024-03-03 12:45:06 +08:00
@staticmethod
def check_documents_upload_quota(count: int, features: FeatureModel):
can_upload_size = features.documents_upload_quota.limit - features.documents_upload_quota.size
if count > can_upload_size:
raise ValueError(
f'You have reached the limit of your subscription. Only {can_upload_size} documents can be uploaded.'
)
2024-03-03 12:45:06 +08:00
@staticmethod
def build_document(
dataset: Dataset, process_rule_id: str, data_source_type: str, document_form: str,
document_language: str, data_source_info: dict, created_from: str, position: int,
account: Account,
name: str, batch: str
):
document = Document(
tenant_id=dataset.tenant_id,
dataset_id=dataset.id,
position=position,
data_source_type=data_source_type,
data_source_info=json.dumps(data_source_info),
dataset_process_rule_id=process_rule_id,
batch=batch,
name=name,
created_from=created_from,
created_by=account.id,
doc_form=document_form,
doc_language=document_language
)
return document
2023-07-16 13:21:56 +08:00
@staticmethod
def get_tenant_documents_count():
documents_count = Document.query.filter(
Document.completed_at.isnot(None),
Document.enabled == True,
Document.archived == False,
Document.tenant_id == current_user.current_tenant_id
).count()
2023-07-16 13:21:56 +08:00
return documents_count
@staticmethod
def update_document_with_dataset_id(
dataset: Dataset, document_data: dict,
account: Account, dataset_process_rule: Optional[DatasetProcessRule] = None,
created_from: str = 'web'
):
DatasetService.check_dataset_model_setting(dataset)
document = DocumentService.get_document(dataset.id, document_data["original_document_id"])
if document.display_status != 'available':
raise ValueError("Document is not available")
# update document name
if document_data.get('name'):
document.name = document_data['name']
2023-05-15 08:51:32 +08:00
# save process rule
if document_data.get('process_rule'):
2023-05-15 08:51:32 +08:00
process_rule = document_data["process_rule"]
if process_rule["mode"] == "custom":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(process_rule["rules"]),
created_by=account.id
)
elif process_rule["mode"] == "automatic":
dataset_process_rule = DatasetProcessRule(
dataset_id=dataset.id,
mode=process_rule["mode"],
rules=json.dumps(DatasetProcessRule.AUTOMATIC_RULES),
created_by=account.id
)
db.session.add(dataset_process_rule)
db.session.commit()
document.dataset_process_rule_id = dataset_process_rule.id
# update document data source
if document_data.get('data_source'):
file_name = ''
data_source_info = {}
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
for file_id in upload_file_list:
file = db.session.query(UploadFile).filter(
UploadFile.tenant_id == dataset.tenant_id,
UploadFile.id == file_id
).first()
# raise error if file not found
if not file:
raise FileNotExistsError()
file_name = file.name
data_source_info = {
"upload_file_id": file_id,
}
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceOauthBinding.query.filter(
db.and_(
DataSourceOauthBinding.tenant_id == current_user.current_tenant_id,
DataSourceOauthBinding.provider == 'notion',
DataSourceOauthBinding.disabled == False,
DataSourceOauthBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
for page in notion_info['pages']:
data_source_info = {
"notion_workspace_id": workspace_id,
"notion_page_id": page['page_id'],
"notion_page_icon": page['page_icon'],
"type": page['type']
}
elif document_data["data_source"]["type"] == "website_crawl":
website_info = document_data["data_source"]['info_list']['website_info_list']
urls = website_info['urls']
for url in urls:
data_source_info = {
'url': url,
'provider': website_info['provider'],
'job_id': website_info['job_id'],
'only_main_content': website_info.get('only_main_content', False),
'mode': 'crawl',
}
document.data_source_type = document_data["data_source"]["type"]
document.data_source_info = json.dumps(data_source_info)
document.name = file_name
# update document to be waiting
document.indexing_status = 'waiting'
document.completed_at = None
document.processing_started_at = None
document.parsing_completed_at = None
document.cleaning_completed_at = None
document.splitting_completed_at = None
document.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
document.created_from = created_from
document.doc_form = document_data['doc_form']
2023-05-15 08:51:32 +08:00
db.session.add(document)
db.session.commit()
# update document segment
update_params = {
DocumentSegment.status: 're_segment'
}
DocumentSegment.query.filter_by(document_id=document.id).update(update_params)
db.session.commit()
2023-05-15 08:51:32 +08:00
# trigger async task
document_indexing_update_task.delay(document.dataset_id, document.id)
2023-05-15 08:51:32 +08:00
return document
@staticmethod
def save_document_without_dataset_id(tenant_id: str, document_data: dict, account: Account):
features = FeatureService.get_features(current_user.current_tenant_id)
if features.billing.enabled:
count = 0
if document_data["data_source"]["type"] == "upload_file":
upload_file_list = document_data["data_source"]["info_list"]['file_info_list']['file_ids']
count = len(upload_file_list)
elif document_data["data_source"]["type"] == "notion_import":
notion_info_list = document_data["data_source"]['info_list']['notion_info_list']
for notion_info in notion_info_list:
count = count + len(notion_info['pages'])
elif document_data["data_source"]["type"] == "website_crawl":
website_info = document_data["data_source"]['info_list']['website_info_list']
count = len(website_info['urls'])
batch_upload_limit = int(dify_config.BATCH_UPLOAD_LIMIT)
if count > batch_upload_limit:
raise ValueError(f"You have reached the batch upload limit of {batch_upload_limit}.")
2024-03-03 12:45:06 +08:00
DocumentService.check_documents_upload_quota(count, features)
embedding_model = None
dataset_collection_binding_id = None
retrieval_model = None
if document_data['indexing_technique'] == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_default_model_instance(
tenant_id=current_user.current_tenant_id,
model_type=ModelType.TEXT_EMBEDDING
)
dataset_collection_binding = DatasetCollectionBindingService.get_dataset_collection_binding(
embedding_model.provider,
embedding_model.model
)
dataset_collection_binding_id = dataset_collection_binding.id
if document_data.get('retrieval_model'):
retrieval_model = document_data['retrieval_model']
else:
default_retrieval_model = {
'search_method': RetrievalMethod.SEMANTIC_SEARCH,
'reranking_enable': False,
'reranking_model': {
'reranking_provider_name': '',
'reranking_model_name': ''
},
'top_k': 2,
'score_threshold_enabled': False
}
retrieval_model = default_retrieval_model
2023-05-15 08:51:32 +08:00
# save dataset
dataset = Dataset(
tenant_id=tenant_id,
name='',
data_source_type=document_data["data_source"]["type"],
indexing_technique=document_data["indexing_technique"],
created_by=account.id,
embedding_model=embedding_model.model if embedding_model else None,
embedding_model_provider=embedding_model.provider if embedding_model else None,
collection_binding_id=dataset_collection_binding_id,
retrieval_model=retrieval_model
2023-05-15 08:51:32 +08:00
)
db.session.add(dataset)
db.session.flush()
documents, batch = DocumentService.save_document_with_dataset_id(dataset, document_data, account)
2023-05-15 08:51:32 +08:00
cut_length = 18
cut_name = documents[0].name[:cut_length]
dataset.name = cut_name + '...'
dataset.description = 'useful for when you want to answer queries about the ' + documents[0].name
2023-05-15 08:51:32 +08:00
db.session.commit()
return dataset, documents, batch
2023-05-15 08:51:32 +08:00
@classmethod
def document_create_args_validate(cls, args: dict):
if 'original_document_id' not in args or not args['original_document_id']:
DocumentService.data_source_args_validate(args)
DocumentService.process_rule_args_validate(args)
else:
if ('data_source' not in args and not args['data_source']) \
and ('process_rule' not in args and not args['process_rule']):
raise ValueError("Data source or Process rule is required")
else:
if args.get('data_source'):
DocumentService.data_source_args_validate(args)
if args.get('process_rule'):
DocumentService.process_rule_args_validate(args)
@classmethod
def data_source_args_validate(cls, args: dict):
2023-05-15 08:51:32 +08:00
if 'data_source' not in args or not args['data_source']:
raise ValueError("Data source is required")
if not isinstance(args['data_source'], dict):
raise ValueError("Data source is invalid")
if 'type' not in args['data_source'] or not args['data_source']['type']:
raise ValueError("Data source type is required")
if args['data_source']['type'] not in Document.DATA_SOURCES:
raise ValueError("Data source type is invalid")
if 'info_list' not in args['data_source'] or not args['data_source']['info_list']:
raise ValueError("Data source info is required")
2023-05-15 08:51:32 +08:00
if args['data_source']['type'] == 'upload_file':
if 'file_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'file_info_list']:
raise ValueError("File source info is required")
if args['data_source']['type'] == 'notion_import':
if 'notion_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'notion_info_list']:
raise ValueError("Notion source info is required")
if args['data_source']['type'] == 'website_crawl':
if 'website_info_list' not in args['data_source']['info_list'] or not args['data_source']['info_list'][
'website_info_list']:
raise ValueError("Website source info is required")
2023-05-15 08:51:32 +08:00
@classmethod
def process_rule_args_validate(cls, args: dict):
2023-05-15 08:51:32 +08:00
if 'process_rule' not in args or not args['process_rule']:
raise ValueError("Process rule is required")
if not isinstance(args['process_rule'], dict):
raise ValueError("Process rule is invalid")
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
raise ValueError("Process rule mode is required")
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args['process_rule']['mode'] == 'automatic':
args['process_rule']['rules'] = {}
else:
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
raise ValueError("Process rule rules is required")
if not isinstance(args['process_rule']['rules'], dict):
raise ValueError("Process rule rules is invalid")
if 'pre_processing_rules' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['pre_processing_rules'] is None:
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule['enabled'], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
if 'segmentation' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['segmentation'] is None:
raise ValueError("Process rule segmentation is required")
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
raise ValueError("Process rule segmentation is invalid")
if 'separator' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['separator']:
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
raise ValueError("Process rule segmentation separator is invalid")
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['max_tokens']:
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
@classmethod
def estimate_args_validate(cls, args: dict):
if 'info_list' not in args or not args['info_list']:
raise ValueError("Data source info is required")
if not isinstance(args['info_list'], dict):
raise ValueError("Data info is invalid")
if 'process_rule' not in args or not args['process_rule']:
raise ValueError("Process rule is required")
if not isinstance(args['process_rule'], dict):
raise ValueError("Process rule is invalid")
if 'mode' not in args['process_rule'] or not args['process_rule']['mode']:
raise ValueError("Process rule mode is required")
if args['process_rule']['mode'] not in DatasetProcessRule.MODES:
raise ValueError("Process rule mode is invalid")
if args['process_rule']['mode'] == 'automatic':
args['process_rule']['rules'] = {}
2023-05-15 08:51:32 +08:00
else:
if 'rules' not in args['process_rule'] or not args['process_rule']['rules']:
raise ValueError("Process rule rules is required")
if not isinstance(args['process_rule']['rules'], dict):
raise ValueError("Process rule rules is invalid")
if 'pre_processing_rules' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['pre_processing_rules'] is None:
2023-05-15 08:51:32 +08:00
raise ValueError("Process rule pre_processing_rules is required")
if not isinstance(args['process_rule']['rules']['pre_processing_rules'], list):
raise ValueError("Process rule pre_processing_rules is invalid")
unique_pre_processing_rule_dicts = {}
for pre_processing_rule in args['process_rule']['rules']['pre_processing_rules']:
if 'id' not in pre_processing_rule or not pre_processing_rule['id']:
raise ValueError("Process rule pre_processing_rules id is required")
if pre_processing_rule['id'] not in DatasetProcessRule.PRE_PROCESSING_RULES:
raise ValueError("Process rule pre_processing_rules id is invalid")
if 'enabled' not in pre_processing_rule or pre_processing_rule['enabled'] is None:
raise ValueError("Process rule pre_processing_rules enabled is required")
if not isinstance(pre_processing_rule['enabled'], bool):
raise ValueError("Process rule pre_processing_rules enabled is invalid")
unique_pre_processing_rule_dicts[pre_processing_rule['id']] = pre_processing_rule
args['process_rule']['rules']['pre_processing_rules'] = list(unique_pre_processing_rule_dicts.values())
if 'segmentation' not in args['process_rule']['rules'] \
or args['process_rule']['rules']['segmentation'] is None:
2023-05-15 08:51:32 +08:00
raise ValueError("Process rule segmentation is required")
if not isinstance(args['process_rule']['rules']['segmentation'], dict):
raise ValueError("Process rule segmentation is invalid")
if 'separator' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['separator']:
2023-05-15 08:51:32 +08:00
raise ValueError("Process rule segmentation separator is required")
if not isinstance(args['process_rule']['rules']['segmentation']['separator'], str):
raise ValueError("Process rule segmentation separator is invalid")
if 'max_tokens' not in args['process_rule']['rules']['segmentation'] \
or not args['process_rule']['rules']['segmentation']['max_tokens']:
2023-05-15 08:51:32 +08:00
raise ValueError("Process rule segmentation max_tokens is required")
if not isinstance(args['process_rule']['rules']['segmentation']['max_tokens'], int):
raise ValueError("Process rule segmentation max_tokens is invalid")
class SegmentService:
@classmethod
def segment_create_args_validate(cls, args: dict, document: Document):
if document.doc_form == 'qa_model':
if 'answer' not in args or not args['answer']:
raise ValueError("Answer is required")
if not args['answer'].strip():
raise ValueError("Answer is empty")
if 'content' not in args or not args['content'] or not args['content'].strip():
raise ValueError("Content is empty")
@classmethod
def create_segment(cls, args: dict, document: Document, dataset: Dataset):
content = args['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(
texts=[content]
)
lock_name = 'add_segment_lock_document_id_{}'.format(document.id)
with redis_client.lock(lock_name, timeout=600):
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status='completed',
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = args['answer']
db.session.add(segment_document)
db.session.commit()
# save vector index
try:
VectorService.create_segments_vector([args['keywords']], [segment_document], dataset)
except Exception as e:
logging.exception("create segment index failed")
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment_document.id).first()
return segment
@classmethod
def multi_create_segment(cls, segments: list, document: Document, dataset: Dataset):
lock_name = 'multi_add_segment_lock_document_id_{}'.format(document.id)
with redis_client.lock(lock_name, timeout=600):
embedding_model = None
if dataset.indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
max_position = db.session.query(func.max(DocumentSegment.position)).filter(
DocumentSegment.document_id == document.id
).scalar()
pre_segment_data_list = []
segment_data_list = []
keywords_list = []
for segment_item in segments:
content = segment_item['content']
doc_id = str(uuid.uuid4())
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality' and embedding_model:
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(
texts=[content]
)
segment_document = DocumentSegment(
tenant_id=current_user.current_tenant_id,
dataset_id=document.dataset_id,
document_id=document.id,
index_node_id=doc_id,
index_node_hash=segment_hash,
position=max_position + 1 if max_position else 1,
content=content,
word_count=len(content),
tokens=tokens,
status='completed',
indexing_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
completed_at=datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None),
created_by=current_user.id
)
if document.doc_form == 'qa_model':
segment_document.answer = segment_item['answer']
db.session.add(segment_document)
segment_data_list.append(segment_document)
pre_segment_data_list.append(segment_document)
keywords_list.append(segment_item['keywords'])
try:
# save vector index
VectorService.create_segments_vector(keywords_list, pre_segment_data_list, dataset)
except Exception as e:
logging.exception("create segment index failed")
for segment_document in segment_data_list:
segment_document.enabled = False
segment_document.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment_document.status = 'error'
segment_document.error = str(e)
db.session.commit()
return segment_data_list
@classmethod
def update_segment(cls, args: dict, segment: DocumentSegment, document: Document, dataset: Dataset):
indexing_cache_key = 'segment_{}_indexing'.format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is indexing, please try again later")
if 'enabled' in args and args['enabled'] is not None:
action = args['enabled']
if segment.enabled != action:
if not action:
segment.enabled = action
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.disabled_by = current_user.id
db.session.add(segment)
db.session.commit()
# Set cache to prevent indexing the same segment multiple times
redis_client.setex(indexing_cache_key, 600, 1)
disable_segment_from_index_task.delay(segment.id)
return segment
if not segment.enabled:
if 'enabled' in args and args['enabled'] is not None:
if not args['enabled']:
raise ValueError("Can't update disabled segment")
else:
raise ValueError("Can't update disabled segment")
try:
content = args['content']
if segment.content == content:
if document.doc_form == 'qa_model':
segment.answer = args['answer']
if args.get('keywords'):
segment.keywords = args['keywords']
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
db.session.add(segment)
db.session.commit()
# update segment index task
if args['keywords']:
keyword = Keyword(dataset)
keyword.delete_by_ids([segment.index_node_id])
document = RAGDocument(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
keyword.add_texts([document], keywords_list=[args['keywords']])
else:
segment_hash = helper.generate_text_hash(content)
tokens = 0
if dataset.indexing_technique == 'high_quality':
model_manager = ModelManager()
embedding_model = model_manager.get_model_instance(
tenant_id=current_user.current_tenant_id,
provider=dataset.embedding_model_provider,
model_type=ModelType.TEXT_EMBEDDING,
model=dataset.embedding_model
)
# calc embedding use tokens
tokens = embedding_model.get_text_embedding_num_tokens(
texts=[content]
)
segment.content = content
segment.index_node_hash = segment_hash
segment.word_count = len(content)
segment.tokens = tokens
segment.status = 'completed'
segment.indexing_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.completed_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.updated_by = current_user.id
segment.updated_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.enabled = True
segment.disabled_at = None
segment.disabled_by = None
if document.doc_form == 'qa_model':
segment.answer = args['answer']
db.session.add(segment)
db.session.commit()
# update segment vector index
VectorService.update_segment_vector(args['keywords'], segment, dataset)
except Exception as e:
logging.exception("update segment index failed")
segment.enabled = False
segment.disabled_at = datetime.datetime.now(datetime.timezone.utc).replace(tzinfo=None)
segment.status = 'error'
segment.error = str(e)
db.session.commit()
segment = db.session.query(DocumentSegment).filter(DocumentSegment.id == segment.id).first()
return segment
@classmethod
def delete_segment(cls, segment: DocumentSegment, document: Document, dataset: Dataset):
indexing_cache_key = 'segment_{}_delete_indexing'.format(segment.id)
cache_result = redis_client.get(indexing_cache_key)
if cache_result is not None:
raise ValueError("Segment is deleting.")
# enabled segment need to delete index
if segment.enabled:
# send delete segment index task
redis_client.setex(indexing_cache_key, 600, 1)
delete_segment_from_index_task.delay(segment.id, segment.index_node_id, dataset.id, document.id)
db.session.delete(segment)
db.session.commit()
class DatasetCollectionBindingService:
@classmethod
def get_dataset_collection_binding(
cls, provider_name: str, model_name: str,
collection_type: str = 'dataset'
) -> DatasetCollectionBinding:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(
DatasetCollectionBinding.provider_name == provider_name,
DatasetCollectionBinding.model_name == model_name,
DatasetCollectionBinding.type == collection_type
). \
order_by(DatasetCollectionBinding.created_at). \
first()
if not dataset_collection_binding:
dataset_collection_binding = DatasetCollectionBinding(
provider_name=provider_name,
model_name=model_name,
collection_name=Dataset.gen_collection_name_by_id(str(uuid.uuid4())),
type=collection_type
)
db.session.add(dataset_collection_binding)
db.session.commit()
return dataset_collection_binding
@classmethod
def get_dataset_collection_binding_by_id_and_type(
cls, collection_binding_id: str,
collection_type: str = 'dataset'
) -> DatasetCollectionBinding:
dataset_collection_binding = db.session.query(DatasetCollectionBinding). \
filter(
DatasetCollectionBinding.id == collection_binding_id,
DatasetCollectionBinding.type == collection_type
). \
order_by(DatasetCollectionBinding.created_at). \
first()
return dataset_collection_binding
class DatasetPermissionService:
@classmethod
def get_dataset_partial_member_list(cls, dataset_id):
user_list_query = db.session.query(
DatasetPermission.account_id,
).filter(
DatasetPermission.dataset_id == dataset_id
).all()
user_list = []
for user in user_list_query:
user_list.append(user.account_id)
return user_list
@classmethod
def update_partial_member_list(cls, tenant_id, dataset_id, user_list):
try:
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
permissions = []
for user in user_list:
permission = DatasetPermission(
tenant_id=tenant_id,
dataset_id=dataset_id,
account_id=user['user_id'],
)
permissions.append(permission)
db.session.add_all(permissions)
db.session.commit()
except Exception as e:
db.session.rollback()
raise e
@classmethod
def check_permission(cls, user, dataset, requested_permission, requested_partial_member_list):
if not user.is_dataset_editor:
raise NoPermissionError('User does not have permission to edit this dataset.')
if user.is_dataset_operator and dataset.permission != requested_permission:
raise NoPermissionError('Dataset operators cannot change the dataset permissions.')
if user.is_dataset_operator and requested_permission == 'partial_members':
if not requested_partial_member_list:
raise ValueError('Partial member list is required when setting to partial members.')
local_member_list = cls.get_dataset_partial_member_list(dataset.id)
request_member_list = [user['user_id'] for user in requested_partial_member_list]
if set(local_member_list) != set(request_member_list):
raise ValueError('Dataset operators cannot change the dataset permissions.')
@classmethod
def clear_partial_member_list(cls, dataset_id):
try:
db.session.query(DatasetPermission).filter(DatasetPermission.dataset_id == dataset_id).delete()
db.session.commit()
except Exception as e:
db.session.rollback()
raise e