dify/api/services/vector_service.py

72 lines
2.4 KiB
Python
Raw Normal View History

from typing import Optional
from core.rag.datasource.keyword.keyword_factory import Keyword
from core.rag.datasource.vdb.vector_factory import Vector
from core.rag.models.document import Document
from models.dataset import Dataset, DocumentSegment
class VectorService:
@classmethod
def create_segments_vector(cls, keywords_list: Optional[list[list[str]]],
segments: list[DocumentSegment], dataset: Dataset):
documents = []
for segment in segments:
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
documents.append(document)
if dataset.indexing_technique == 'high_quality':
# save vector index
vector = Vector(
dataset=dataset
)
vector.add_texts(documents, duplicate_check=True)
# save keyword index
keyword = Keyword(dataset)
if keywords_list and len(keywords_list) > 0:
keyword.add_texts(documents, keywords_list=keywords_list)
else:
keyword.add_texts(documents)
@classmethod
def update_segment_vector(cls, keywords: Optional[list[str]], segment: DocumentSegment, dataset: Dataset):
# update segment index task
# format new index
document = Document(
page_content=segment.content,
metadata={
"doc_id": segment.index_node_id,
"doc_hash": segment.index_node_hash,
"document_id": segment.document_id,
"dataset_id": segment.dataset_id,
}
)
if dataset.indexing_technique == 'high_quality':
# update vector index
vector = Vector(
dataset=dataset
)
vector.delete_by_ids([segment.index_node_id])
vector.add_texts([document], duplicate_check=True)
# update keyword index
keyword = Keyword(dataset)
keyword.delete_by_ids([segment.index_node_id])
# save keyword index
if keywords and len(keywords) > 0:
keyword.add_texts([document], keywords_list=[keywords])
else:
keyword.add_texts([document])