dify/api/services/workflow/workflow_converter.py

629 lines
25 KiB
Python
Raw Normal View History

import json
from typing import Optional
from core.app.app_config.entities import (
DatasetEntity,
DatasetRetrieveConfigEntity,
EasyUIBasedAppConfig,
ExternalDataVariableEntity,
ModelConfigEntity,
PromptTemplateEntity,
VariableEntity,
)
from core.app.apps.agent_chat.app_config_manager import AgentChatAppConfigManager
from core.app.apps.chat.app_config_manager import ChatAppConfigManager
from core.app.apps.completion.app_config_manager import CompletionAppConfigManager
from core.file.file_obj import FileExtraConfig
from core.helper import encrypter
from core.model_runtime.entities.llm_entities import LLMMode
from core.model_runtime.utils.encoders import jsonable_encoder
from core.prompt.simple_prompt_transform import SimplePromptTransform
from core.workflow.entities.node_entities import NodeType
from events.app_event import app_was_created
from extensions.ext_database import db
from models.account import Account
from models.api_based_extension import APIBasedExtension, APIBasedExtensionPoint
from models.model import App, AppMode, AppModelConfig
from models.workflow import Workflow, WorkflowType
class WorkflowConverter:
"""
App Convert to Workflow Mode
"""
def convert_to_workflow(
self, app_model: App, account: Account, name: str, icon_type: str, icon: str, icon_background: str
):
"""
Convert app to workflow
- basic mode of chatbot app
- expert mode of chatbot app
- completion app
:param app_model: App instance
:param account: Account
:param name: new app name
:param icon: new app icon
:param icon_type: new app icon type
:param icon_background: new app icon background
:return: new App instance
"""
# convert app model config
if not app_model.app_model_config:
raise ValueError("App model config is required")
workflow = self.convert_app_model_config_to_workflow(
app_model=app_model, app_model_config=app_model.app_model_config, account_id=account.id
)
# create new app
new_app = App()
new_app.tenant_id = app_model.tenant_id
new_app.name = name or app_model.name + "(workflow)"
new_app.mode = AppMode.ADVANCED_CHAT.value if app_model.mode == AppMode.CHAT.value else AppMode.WORKFLOW.value
new_app.icon_type = icon_type or app_model.icon_type
new_app.icon = icon or app_model.icon
new_app.icon_background = icon_background or app_model.icon_background
new_app.enable_site = app_model.enable_site
new_app.enable_api = app_model.enable_api
new_app.api_rpm = app_model.api_rpm
new_app.api_rph = app_model.api_rph
new_app.is_demo = False
new_app.is_public = app_model.is_public
new_app.created_by = account.id
new_app.updated_by = account.id
db.session.add(new_app)
db.session.flush()
db.session.commit()
workflow.app_id = new_app.id
db.session.commit()
app_was_created.send(new_app, account=account)
return new_app
def convert_app_model_config_to_workflow(self, app_model: App, app_model_config: AppModelConfig, account_id: str):
"""
Convert app model config to workflow mode
:param app_model: App instance
:param app_model_config: AppModelConfig instance
:param account_id: Account ID
"""
# get new app mode
new_app_mode = self._get_new_app_mode(app_model)
# convert app model config
app_config = self._convert_to_app_config(app_model=app_model, app_model_config=app_model_config)
# init workflow graph
graph = {"nodes": [], "edges": []}
# Convert list:
# - variables -> start
# - model_config -> llm
# - prompt_template -> llm
# - file_upload -> llm
# - external_data_variables -> http-request
# - dataset -> knowledge-retrieval
# - show_retrieve_source -> knowledge-retrieval
# convert to start node
start_node = self._convert_to_start_node(variables=app_config.variables)
graph["nodes"].append(start_node)
# convert to http request node
external_data_variable_node_mapping = {}
if app_config.external_data_variables:
http_request_nodes, external_data_variable_node_mapping = self._convert_to_http_request_node(
app_model=app_model,
variables=app_config.variables,
external_data_variables=app_config.external_data_variables,
)
for http_request_node in http_request_nodes:
graph = self._append_node(graph, http_request_node)
# convert to knowledge retrieval node
if app_config.dataset:
knowledge_retrieval_node = self._convert_to_knowledge_retrieval_node(
new_app_mode=new_app_mode, dataset_config=app_config.dataset, model_config=app_config.model
)
if knowledge_retrieval_node:
graph = self._append_node(graph, knowledge_retrieval_node)
# convert to llm node
llm_node = self._convert_to_llm_node(
original_app_mode=AppMode.value_of(app_model.mode),
new_app_mode=new_app_mode,
graph=graph,
model_config=app_config.model,
prompt_template=app_config.prompt_template,
file_upload=app_config.additional_features.file_upload,
external_data_variable_node_mapping=external_data_variable_node_mapping,
)
graph = self._append_node(graph, llm_node)
if new_app_mode == AppMode.WORKFLOW:
# convert to end node by app mode
end_node = self._convert_to_end_node()
graph = self._append_node(graph, end_node)
else:
answer_node = self._convert_to_answer_node()
graph = self._append_node(graph, answer_node)
app_model_config_dict = app_config.app_model_config_dict
# features
if new_app_mode == AppMode.ADVANCED_CHAT:
features = {
"opening_statement": app_model_config_dict.get("opening_statement"),
"suggested_questions": app_model_config_dict.get("suggested_questions"),
"suggested_questions_after_answer": app_model_config_dict.get("suggested_questions_after_answer"),
"speech_to_text": app_model_config_dict.get("speech_to_text"),
"text_to_speech": app_model_config_dict.get("text_to_speech"),
"file_upload": app_model_config_dict.get("file_upload"),
"sensitive_word_avoidance": app_model_config_dict.get("sensitive_word_avoidance"),
"retriever_resource": app_model_config_dict.get("retriever_resource"),
}
else:
features = {
"text_to_speech": app_model_config_dict.get("text_to_speech"),
"file_upload": app_model_config_dict.get("file_upload"),
"sensitive_word_avoidance": app_model_config_dict.get("sensitive_word_avoidance"),
}
# create workflow record
workflow = Workflow(
tenant_id=app_model.tenant_id,
app_id=app_model.id,
type=WorkflowType.from_app_mode(new_app_mode).value,
version="draft",
graph=json.dumps(graph),
features=json.dumps(features),
created_by=account_id,
environment_variables=[],
conversation_variables=[],
)
db.session.add(workflow)
db.session.commit()
return workflow
def _convert_to_app_config(self, app_model: App, app_model_config: AppModelConfig) -> EasyUIBasedAppConfig:
app_mode = AppMode.value_of(app_model.mode)
if app_mode == AppMode.AGENT_CHAT or app_model.is_agent:
app_model.mode = AppMode.AGENT_CHAT.value
app_config = AgentChatAppConfigManager.get_app_config(
app_model=app_model, app_model_config=app_model_config
)
elif app_mode == AppMode.CHAT:
app_config = ChatAppConfigManager.get_app_config(app_model=app_model, app_model_config=app_model_config)
elif app_mode == AppMode.COMPLETION:
app_config = CompletionAppConfigManager.get_app_config(
app_model=app_model, app_model_config=app_model_config
)
else:
raise ValueError("Invalid app mode")
return app_config
def _convert_to_start_node(self, variables: list[VariableEntity]) -> dict:
"""
Convert to Start Node
:param variables: list of variables
:return:
"""
return {
"id": "start",
"position": None,
"data": {
"title": "START",
"type": NodeType.START.value,
"variables": [jsonable_encoder(v) for v in variables],
},
}
def _convert_to_http_request_node(
self, app_model: App, variables: list[VariableEntity], external_data_variables: list[ExternalDataVariableEntity]
) -> tuple[list[dict], dict[str, str]]:
"""
Convert API Based Extension to HTTP Request Node
:param app_model: App instance
:param variables: list of variables
:param external_data_variables: list of external data variables
:return:
"""
index = 1
nodes = []
external_data_variable_node_mapping = {}
tenant_id = app_model.tenant_id
for external_data_variable in external_data_variables:
tool_type = external_data_variable.type
if tool_type != "api":
continue
tool_variable = external_data_variable.variable
tool_config = external_data_variable.config
# get params from config
api_based_extension_id = tool_config.get("api_based_extension_id")
if not api_based_extension_id:
continue
# get api_based_extension
api_based_extension = self._get_api_based_extension(
tenant_id=tenant_id, api_based_extension_id=api_based_extension_id
)
# decrypt api_key
api_key = encrypter.decrypt_token(tenant_id=tenant_id, token=api_based_extension.api_key)
inputs = {}
for v in variables:
inputs[v.variable] = "{{#start." + v.variable + "#}}"
request_body = {
"point": APIBasedExtensionPoint.APP_EXTERNAL_DATA_TOOL_QUERY.value,
"params": {
"app_id": app_model.id,
"tool_variable": tool_variable,
"inputs": inputs,
"query": "{{#sys.query#}}" if app_model.mode == AppMode.CHAT.value else "",
},
}
request_body_json = json.dumps(request_body)
request_body_json = request_body_json.replace(r"\{\{", "{{").replace(r"\}\}", "}}")
http_request_node = {
"id": f"http_request_{index}",
"position": None,
"data": {
"title": f"HTTP REQUEST {api_based_extension.name}",
"type": NodeType.HTTP_REQUEST.value,
"method": "post",
"url": api_based_extension.api_endpoint,
"authorization": {"type": "api-key", "config": {"type": "bearer", "api_key": api_key}},
"headers": "",
"params": "",
"body": {"type": "json", "data": request_body_json},
},
}
nodes.append(http_request_node)
# append code node for response body parsing
code_node = {
"id": f"code_{index}",
"position": None,
"data": {
"title": f"Parse {api_based_extension.name} Response",
"type": NodeType.CODE.value,
"variables": [{"variable": "response_json", "value_selector": [http_request_node["id"], "body"]}],
"code_language": "python3",
"code": "import json\n\ndef main(response_json: str) -> str:\n response_body = json.loads("
'response_json)\n return {\n "result": response_body["result"]\n }',
"outputs": {"result": {"type": "string"}},
},
}
nodes.append(code_node)
external_data_variable_node_mapping[external_data_variable.variable] = code_node["id"]
index += 1
return nodes, external_data_variable_node_mapping
def _convert_to_knowledge_retrieval_node(
self, new_app_mode: AppMode, dataset_config: DatasetEntity, model_config: ModelConfigEntity
) -> Optional[dict]:
"""
Convert datasets to Knowledge Retrieval Node
:param new_app_mode: new app mode
:param dataset_config: dataset
:param model_config: model config
:return:
"""
retrieve_config = dataset_config.retrieve_config
if new_app_mode == AppMode.ADVANCED_CHAT:
query_variable_selector = ["sys", "query"]
elif retrieve_config.query_variable:
# fetch query variable
query_variable_selector = ["start", retrieve_config.query_variable]
else:
return None
return {
"id": "knowledge_retrieval",
"position": None,
"data": {
"title": "KNOWLEDGE RETRIEVAL",
"type": NodeType.KNOWLEDGE_RETRIEVAL.value,
"query_variable_selector": query_variable_selector,
"dataset_ids": dataset_config.dataset_ids,
"retrieval_mode": retrieve_config.retrieve_strategy.value,
"single_retrieval_config": {
"model": {
"provider": model_config.provider,
"name": model_config.model,
"mode": model_config.mode,
"completion_params": {
**model_config.parameters,
"stop": model_config.stop,
},
}
}
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.SINGLE
else None,
"multiple_retrieval_config": {
"top_k": retrieve_config.top_k,
"score_threshold": retrieve_config.score_threshold,
"reranking_model": retrieve_config.reranking_model,
}
if retrieve_config.retrieve_strategy == DatasetRetrieveConfigEntity.RetrieveStrategy.MULTIPLE
else None,
},
}
def _convert_to_llm_node(
self,
original_app_mode: AppMode,
new_app_mode: AppMode,
graph: dict,
model_config: ModelConfigEntity,
prompt_template: PromptTemplateEntity,
file_upload: Optional[FileExtraConfig] = None,
external_data_variable_node_mapping: dict[str, str] | None = None,
) -> dict:
"""
Convert to LLM Node
:param original_app_mode: original app mode
:param new_app_mode: new app mode
:param graph: graph
:param model_config: model config
:param prompt_template: prompt template
:param file_upload: file upload config (optional)
:param external_data_variable_node_mapping: external data variable node mapping
"""
# fetch start and knowledge retrieval node
start_node = next(filter(lambda n: n["data"]["type"] == NodeType.START.value, graph["nodes"]))
knowledge_retrieval_node = next(
filter(lambda n: n["data"]["type"] == NodeType.KNOWLEDGE_RETRIEVAL.value, graph["nodes"]), None
)
role_prefix = None
# Chat Model
if model_config.mode == LLMMode.CHAT.value:
if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
if not prompt_template.simple_prompt_template:
raise ValueError("Simple prompt template is required")
# get prompt template
prompt_transform = SimplePromptTransform()
prompt_template_config = prompt_transform.get_prompt_template(
app_mode=original_app_mode,
provider=model_config.provider,
model=model_config.model,
pre_prompt=prompt_template.simple_prompt_template,
has_context=knowledge_retrieval_node is not None,
query_in_prompt=False,
)
template = prompt_template_config["prompt_template"].template
if not template:
prompts = []
else:
template = self._replace_template_variables(
template, start_node["data"]["variables"], external_data_variable_node_mapping
)
prompts = [{"role": "user", "text": template}]
else:
advanced_chat_prompt_template = prompt_template.advanced_chat_prompt_template
prompts = []
if advanced_chat_prompt_template:
for m in advanced_chat_prompt_template.messages:
text = m.text
text = self._replace_template_variables(
text, start_node["data"]["variables"], external_data_variable_node_mapping
)
prompts.append({"role": m.role.value, "text": text})
# Completion Model
else:
if prompt_template.prompt_type == PromptTemplateEntity.PromptType.SIMPLE:
if not prompt_template.simple_prompt_template:
raise ValueError("Simple prompt template is required")
# get prompt template
prompt_transform = SimplePromptTransform()
prompt_template_config = prompt_transform.get_prompt_template(
app_mode=original_app_mode,
provider=model_config.provider,
model=model_config.model,
pre_prompt=prompt_template.simple_prompt_template,
has_context=knowledge_retrieval_node is not None,
query_in_prompt=False,
)
template = prompt_template_config["prompt_template"].template
template = self._replace_template_variables(
template=template,
variables=start_node["data"]["variables"],
external_data_variable_node_mapping=external_data_variable_node_mapping,
)
prompts = {"text": template}
prompt_rules = prompt_template_config["prompt_rules"]
role_prefix = {
"user": prompt_rules.get("human_prefix", "Human"),
"assistant": prompt_rules.get("assistant_prefix", "Assistant"),
}
else:
advanced_completion_prompt_template = prompt_template.advanced_completion_prompt_template
if advanced_completion_prompt_template:
text = advanced_completion_prompt_template.prompt
text = self._replace_template_variables(
template=text,
variables=start_node["data"]["variables"],
external_data_variable_node_mapping=external_data_variable_node_mapping,
)
else:
text = ""
text = text.replace("{{#query#}}", "{{#sys.query#}}")
prompts = {
"text": text,
}
if advanced_completion_prompt_template and advanced_completion_prompt_template.role_prefix:
role_prefix = {
"user": advanced_completion_prompt_template.role_prefix.user,
"assistant": advanced_completion_prompt_template.role_prefix.assistant,
}
memory = None
if new_app_mode == AppMode.ADVANCED_CHAT:
memory = {"role_prefix": role_prefix, "window": {"enabled": False}}
completion_params = model_config.parameters
completion_params.update({"stop": model_config.stop})
return {
"id": "llm",
"position": None,
"data": {
"title": "LLM",
"type": NodeType.LLM.value,
"model": {
"provider": model_config.provider,
"name": model_config.model,
"mode": model_config.mode,
"completion_params": completion_params,
},
"prompt_template": prompts,
"memory": memory,
"context": {
"enabled": knowledge_retrieval_node is not None,
"variable_selector": ["knowledge_retrieval", "result"]
if knowledge_retrieval_node is not None
else None,
},
"vision": {
"enabled": file_upload is not None,
"variable_selector": ["sys", "files"] if file_upload is not None else None,
"configs": {"detail": file_upload.image_config["detail"]}
if file_upload is not None and file_upload.image_config is not None
else None,
},
},
}
def _replace_template_variables(
self, template: str, variables: list[dict], external_data_variable_node_mapping: dict[str, str] | None = None
) -> str:
"""
Replace Template Variables
:param template: template
:param variables: list of variables
2024-08-16 14:19:01 +08:00
:param external_data_variable_node_mapping: external data variable node mapping
:return:
"""
for v in variables:
template = template.replace("{{" + v["variable"] + "}}", "{{#start." + v["variable"] + "#}}")
if external_data_variable_node_mapping:
for variable, code_node_id in external_data_variable_node_mapping.items():
template = template.replace("{{" + variable + "}}", "{{#" + code_node_id + ".result#}}")
return template
def _convert_to_end_node(self) -> dict:
"""
Convert to End Node
:return:
"""
# for original completion app
return {
"id": "end",
"position": None,
"data": {
"title": "END",
"type": NodeType.END.value,
"outputs": [{"variable": "result", "value_selector": ["llm", "text"]}],
},
}
def _convert_to_answer_node(self) -> dict:
"""
Convert to Answer Node
:return:
"""
# for original chat app
return {
"id": "answer",
"position": None,
"data": {"title": "ANSWER", "type": NodeType.ANSWER.value, "answer": "{{#llm.text#}}"},
}
def _create_edge(self, source: str, target: str) -> dict:
"""
Create Edge
:param source: source node id
:param target: target node id
:return:
"""
return {"id": f"{source}-{target}", "source": source, "target": target}
def _append_node(self, graph: dict, node: dict) -> dict:
"""
Append Node to Graph
:param graph: Graph, include: nodes, edges
:param node: Node to append
:return:
"""
previous_node = graph["nodes"][-1]
graph["nodes"].append(node)
graph["edges"].append(self._create_edge(previous_node["id"], node["id"]))
return graph
def _get_new_app_mode(self, app_model: App) -> AppMode:
"""
Get new app mode
:param app_model: App instance
:return: AppMode
"""
if app_model.mode == AppMode.COMPLETION.value:
return AppMode.WORKFLOW
else:
return AppMode.ADVANCED_CHAT
def _get_api_based_extension(self, tenant_id: str, api_based_extension_id: str):
"""
Get API Based Extension
:param tenant_id: tenant id
:param api_based_extension_id: api based extension id
:return:
"""
api_based_extension = (
db.session.query(APIBasedExtension)
.filter(APIBasedExtension.tenant_id == tenant_id, APIBasedExtension.id == api_based_extension_id)
.first()
)
if not api_based_extension:
raise ValueError(f"API Based Extension not found, id: {api_based_extension_id}")
return api_based_extension