2024-01-23 19:58:23 +08:00
|
|
|
import json
|
|
|
|
import logging
|
|
|
|
import re
|
|
|
|
from typing import Literal, Union, Generator, Dict, List
|
|
|
|
|
|
|
|
from core.entities.application_entities import AgentPromptEntity, AgentScratchpadUnit
|
|
|
|
from core.application_queue_manager import PublishFrom
|
|
|
|
from core.model_runtime.utils.encoders import jsonable_encoder
|
|
|
|
from core.model_runtime.entities.message_entities import PromptMessageTool, PromptMessage, \
|
|
|
|
UserPromptMessage, SystemPromptMessage, AssistantPromptMessage
|
|
|
|
from core.model_runtime.entities.llm_entities import LLMResult, LLMUsage, LLMResultChunk, LLMResultChunkDelta
|
|
|
|
from core.model_manager import ModelInstance
|
|
|
|
|
|
|
|
from core.tools.errors import ToolInvokeError, ToolNotFoundError, \
|
2024-01-31 11:58:07 +08:00
|
|
|
ToolNotSupportedError, ToolProviderNotFoundError, ToolParameterValidationError, \
|
2024-01-23 19:58:23 +08:00
|
|
|
ToolProviderCredentialValidationError
|
|
|
|
|
|
|
|
from core.features.assistant_base_runner import BaseAssistantApplicationRunner
|
|
|
|
|
|
|
|
from models.model import Conversation, Message
|
|
|
|
|
|
|
|
class AssistantCotApplicationRunner(BaseAssistantApplicationRunner):
|
2024-01-30 15:25:37 +08:00
|
|
|
def run(self, conversation: Conversation,
|
2024-01-23 19:58:23 +08:00
|
|
|
message: Message,
|
|
|
|
query: str,
|
|
|
|
) -> Union[Generator, LLMResult]:
|
|
|
|
"""
|
|
|
|
Run Cot agent application
|
|
|
|
"""
|
|
|
|
app_orchestration_config = self.app_orchestration_config
|
2024-01-31 11:58:07 +08:00
|
|
|
self._repack_app_orchestration_config(app_orchestration_config)
|
2024-01-23 19:58:23 +08:00
|
|
|
|
|
|
|
agent_scratchpad: List[AgentScratchpadUnit] = []
|
|
|
|
|
|
|
|
# check model mode
|
|
|
|
if self.app_orchestration_config.model_config.mode == "completion":
|
|
|
|
# TODO: stop words
|
|
|
|
if 'Observation' not in app_orchestration_config.model_config.stop:
|
|
|
|
app_orchestration_config.model_config.stop.append('Observation')
|
|
|
|
|
|
|
|
iteration_step = 1
|
|
|
|
max_iteration_steps = min(self.app_orchestration_config.agent.max_iteration, 5) + 1
|
|
|
|
|
|
|
|
prompt_messages = self.history_prompt_messages
|
|
|
|
|
|
|
|
# convert tools into ModelRuntime Tool format
|
|
|
|
prompt_messages_tools: List[PromptMessageTool] = []
|
|
|
|
tool_instances = {}
|
|
|
|
for tool in self.app_orchestration_config.agent.tools if self.app_orchestration_config.agent else []:
|
|
|
|
try:
|
|
|
|
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
|
|
|
|
except Exception:
|
|
|
|
# api tool may be deleted
|
|
|
|
continue
|
|
|
|
# save tool entity
|
|
|
|
tool_instances[tool.tool_name] = tool_entity
|
|
|
|
# save prompt tool
|
|
|
|
prompt_messages_tools.append(prompt_tool)
|
|
|
|
|
|
|
|
# convert dataset tools into ModelRuntime Tool format
|
|
|
|
for dataset_tool in self.dataset_tools:
|
|
|
|
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
|
|
|
|
# save prompt tool
|
|
|
|
prompt_messages_tools.append(prompt_tool)
|
|
|
|
# save tool entity
|
|
|
|
tool_instances[dataset_tool.identity.name] = dataset_tool
|
|
|
|
|
|
|
|
function_call_state = True
|
|
|
|
llm_usage = {
|
|
|
|
'usage': None
|
|
|
|
}
|
|
|
|
final_answer = ''
|
|
|
|
|
2024-01-31 11:58:07 +08:00
|
|
|
def increase_usage(final_llm_usage_dict: Dict[str, LLMUsage], usage: LLMUsage):
|
2024-01-23 19:58:23 +08:00
|
|
|
if not final_llm_usage_dict['usage']:
|
|
|
|
final_llm_usage_dict['usage'] = usage
|
|
|
|
else:
|
|
|
|
llm_usage = final_llm_usage_dict['usage']
|
|
|
|
llm_usage.prompt_tokens += usage.prompt_tokens
|
|
|
|
llm_usage.completion_tokens += usage.completion_tokens
|
|
|
|
llm_usage.prompt_price += usage.prompt_price
|
|
|
|
llm_usage.completion_price += usage.completion_price
|
|
|
|
|
2024-01-30 15:25:37 +08:00
|
|
|
model_instance = self.model_instance
|
|
|
|
|
2024-01-23 19:58:23 +08:00
|
|
|
while function_call_state and iteration_step <= max_iteration_steps:
|
|
|
|
# continue to run until there is not any tool call
|
|
|
|
function_call_state = False
|
|
|
|
|
|
|
|
if iteration_step == max_iteration_steps:
|
|
|
|
# the last iteration, remove all tools
|
|
|
|
prompt_messages_tools = []
|
|
|
|
|
|
|
|
message_file_ids = []
|
2024-01-24 12:09:30 +08:00
|
|
|
|
2024-01-23 19:58:23 +08:00
|
|
|
agent_thought = self.create_agent_thought(
|
|
|
|
message_id=message.id,
|
|
|
|
message='',
|
|
|
|
tool_name='',
|
|
|
|
tool_input='',
|
|
|
|
messages_ids=message_file_ids
|
|
|
|
)
|
2024-01-24 12:09:30 +08:00
|
|
|
|
|
|
|
if iteration_step > 1:
|
|
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
2024-01-23 19:58:23 +08:00
|
|
|
|
|
|
|
# update prompt messages
|
2024-01-31 11:58:07 +08:00
|
|
|
prompt_messages = self._organize_cot_prompt_messages(
|
2024-01-23 19:58:23 +08:00
|
|
|
mode=app_orchestration_config.model_config.mode,
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
tools=prompt_messages_tools,
|
|
|
|
agent_scratchpad=agent_scratchpad,
|
|
|
|
agent_prompt_message=app_orchestration_config.agent.prompt,
|
|
|
|
instruction=app_orchestration_config.prompt_template.simple_prompt_template,
|
|
|
|
input=query
|
|
|
|
)
|
|
|
|
|
|
|
|
# recale llm max tokens
|
|
|
|
self.recale_llm_max_tokens(self.model_config, prompt_messages)
|
|
|
|
# invoke model
|
|
|
|
llm_result: LLMResult = model_instance.invoke_llm(
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
model_parameters=app_orchestration_config.model_config.parameters,
|
|
|
|
tools=[],
|
|
|
|
stop=app_orchestration_config.model_config.stop,
|
|
|
|
stream=False,
|
|
|
|
user=self.user_id,
|
|
|
|
callbacks=[],
|
|
|
|
)
|
|
|
|
|
|
|
|
# check llm result
|
|
|
|
if not llm_result:
|
|
|
|
raise ValueError("failed to invoke llm")
|
|
|
|
|
|
|
|
# get scratchpad
|
|
|
|
scratchpad = self._extract_response_scratchpad(llm_result.message.content)
|
|
|
|
agent_scratchpad.append(scratchpad)
|
|
|
|
|
|
|
|
# get llm usage
|
|
|
|
if llm_result.usage:
|
2024-01-31 11:58:07 +08:00
|
|
|
increase_usage(llm_usage, llm_result.usage)
|
2024-01-24 12:09:30 +08:00
|
|
|
|
|
|
|
# publish agent thought if it's first iteration
|
|
|
|
if iteration_step == 1:
|
|
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
2024-01-23 19:58:23 +08:00
|
|
|
self.save_agent_thought(agent_thought=agent_thought,
|
|
|
|
tool_name=scratchpad.action.action_name if scratchpad.action else '',
|
|
|
|
tool_input=scratchpad.action.action_input if scratchpad.action else '',
|
|
|
|
thought=scratchpad.thought,
|
|
|
|
observation='',
|
|
|
|
answer=llm_result.message.content,
|
|
|
|
messages_ids=[],
|
|
|
|
llm_usage=llm_result.usage)
|
|
|
|
|
|
|
|
if scratchpad.action and scratchpad.action.action_name.lower() != "final answer":
|
|
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
|
|
|
# publish agent thought if it's not empty and there is a action
|
|
|
|
if scratchpad.thought and scratchpad.action:
|
|
|
|
# check if final answer
|
|
|
|
if not scratchpad.action.action_name.lower() == "final answer":
|
|
|
|
yield LLMResultChunk(
|
|
|
|
model=model_instance.model,
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
delta=LLMResultChunkDelta(
|
|
|
|
index=0,
|
|
|
|
message=AssistantPromptMessage(
|
|
|
|
content=scratchpad.thought
|
|
|
|
),
|
|
|
|
usage=llm_result.usage,
|
|
|
|
),
|
|
|
|
system_fingerprint=''
|
|
|
|
)
|
|
|
|
|
|
|
|
if not scratchpad.action:
|
|
|
|
# failed to extract action, return final answer directly
|
|
|
|
final_answer = scratchpad.agent_response or ''
|
|
|
|
else:
|
|
|
|
if scratchpad.action.action_name.lower() == "final answer":
|
|
|
|
# action is final answer, return final answer directly
|
|
|
|
try:
|
|
|
|
final_answer = scratchpad.action.action_input if \
|
|
|
|
isinstance(scratchpad.action.action_input, str) else \
|
|
|
|
json.dumps(scratchpad.action.action_input)
|
|
|
|
except json.JSONDecodeError:
|
|
|
|
final_answer = f'{scratchpad.action.action_input}'
|
|
|
|
else:
|
|
|
|
function_call_state = True
|
|
|
|
|
|
|
|
# action is tool call, invoke tool
|
|
|
|
tool_call_name = scratchpad.action.action_name
|
|
|
|
tool_call_args = scratchpad.action.action_input
|
|
|
|
tool_instance = tool_instances.get(tool_call_name)
|
|
|
|
if not tool_instance:
|
|
|
|
answer = f"there is not a tool named {tool_call_name}"
|
|
|
|
self.save_agent_thought(agent_thought=agent_thought,
|
|
|
|
tool_name='',
|
|
|
|
tool_input='',
|
|
|
|
thought=None,
|
|
|
|
observation=answer,
|
|
|
|
answer=answer,
|
|
|
|
messages_ids=[])
|
|
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
else:
|
|
|
|
# invoke tool
|
|
|
|
error_response = None
|
|
|
|
try:
|
|
|
|
tool_response = tool_instance.invoke(
|
|
|
|
user_id=self.user_id,
|
2024-01-31 11:58:07 +08:00
|
|
|
tool_parameters=tool_call_args if isinstance(tool_call_args, dict) else json.loads(tool_call_args)
|
2024-01-23 19:58:23 +08:00
|
|
|
)
|
|
|
|
# transform tool response to llm friendly response
|
|
|
|
tool_response = self.transform_tool_invoke_messages(tool_response)
|
|
|
|
# extract binary data from tool invoke message
|
|
|
|
binary_files = self.extract_tool_response_binary(tool_response)
|
|
|
|
# create message file
|
|
|
|
message_files = self.create_message_files(binary_files)
|
|
|
|
# publish files
|
|
|
|
for message_file, save_as in message_files:
|
|
|
|
if save_as:
|
|
|
|
self.variables_pool.set_file(tool_name=tool_call_name,
|
|
|
|
value=message_file.id,
|
|
|
|
name=save_as)
|
|
|
|
self.queue_manager.publish_message_file(message_file, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
|
|
|
message_file_ids = [message_file.id for message_file, _ in message_files]
|
|
|
|
except ToolProviderCredentialValidationError as e:
|
2024-01-31 11:58:07 +08:00
|
|
|
error_response = f"Please check your tool provider credentials"
|
2024-01-23 19:58:23 +08:00
|
|
|
except (
|
|
|
|
ToolNotFoundError, ToolNotSupportedError, ToolProviderNotFoundError
|
|
|
|
) as e:
|
|
|
|
error_response = f"there is not a tool named {tool_call_name}"
|
|
|
|
except (
|
2024-01-31 11:58:07 +08:00
|
|
|
ToolParameterValidationError
|
2024-01-23 19:58:23 +08:00
|
|
|
) as e:
|
2024-01-31 11:58:07 +08:00
|
|
|
error_response = f"tool parameters validation error: {e}, please check your tool parameters"
|
2024-01-23 19:58:23 +08:00
|
|
|
except ToolInvokeError as e:
|
|
|
|
error_response = f"tool invoke error: {e}"
|
|
|
|
except Exception as e:
|
|
|
|
error_response = f"unknown error: {e}"
|
|
|
|
|
|
|
|
if error_response:
|
|
|
|
observation = error_response
|
|
|
|
else:
|
|
|
|
observation = self._convert_tool_response_to_str(tool_response)
|
|
|
|
|
|
|
|
# save scratchpad
|
|
|
|
scratchpad.observation = observation
|
|
|
|
scratchpad.agent_response = llm_result.message.content
|
|
|
|
|
|
|
|
# save agent thought
|
|
|
|
self.save_agent_thought(
|
|
|
|
agent_thought=agent_thought,
|
|
|
|
tool_name=tool_call_name,
|
|
|
|
tool_input=tool_call_args,
|
|
|
|
thought=None,
|
|
|
|
observation=observation,
|
|
|
|
answer=llm_result.message.content,
|
|
|
|
messages_ids=message_file_ids,
|
|
|
|
)
|
|
|
|
self.queue_manager.publish_agent_thought(agent_thought, PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
|
|
|
# update prompt tool message
|
|
|
|
for prompt_tool in prompt_messages_tools:
|
|
|
|
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
|
|
|
|
|
|
|
|
iteration_step += 1
|
|
|
|
|
|
|
|
yield LLMResultChunk(
|
|
|
|
model=model_instance.model,
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
delta=LLMResultChunkDelta(
|
|
|
|
index=0,
|
|
|
|
message=AssistantPromptMessage(
|
|
|
|
content=final_answer
|
|
|
|
),
|
|
|
|
usage=llm_usage['usage']
|
|
|
|
),
|
|
|
|
system_fingerprint=''
|
|
|
|
)
|
|
|
|
|
|
|
|
# save agent thought
|
|
|
|
self.save_agent_thought(
|
|
|
|
agent_thought=agent_thought,
|
|
|
|
tool_name='',
|
|
|
|
tool_input='',
|
|
|
|
thought=final_answer,
|
|
|
|
observation='',
|
|
|
|
answer=final_answer,
|
|
|
|
messages_ids=[]
|
|
|
|
)
|
|
|
|
|
|
|
|
self.update_db_variables(self.variables_pool, self.db_variables_pool)
|
|
|
|
# publish end event
|
|
|
|
self.queue_manager.publish_message_end(LLMResult(
|
|
|
|
model=model_instance.model,
|
|
|
|
prompt_messages=prompt_messages,
|
|
|
|
message=AssistantPromptMessage(
|
|
|
|
content=final_answer
|
|
|
|
),
|
2024-01-24 15:34:17 +08:00
|
|
|
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
|
2024-01-23 19:58:23 +08:00
|
|
|
system_fingerprint=''
|
|
|
|
), PublishFrom.APPLICATION_MANAGER)
|
|
|
|
|
|
|
|
def _extract_response_scratchpad(self, content: str) -> AgentScratchpadUnit:
|
|
|
|
"""
|
|
|
|
extract response from llm response
|
|
|
|
"""
|
|
|
|
def extra_quotes() -> AgentScratchpadUnit:
|
|
|
|
agent_response = content
|
|
|
|
# try to extract all quotes
|
|
|
|
pattern = re.compile(r'```(.*?)```', re.DOTALL)
|
|
|
|
quotes = pattern.findall(content)
|
|
|
|
|
|
|
|
# try to extract action from end to start
|
|
|
|
for i in range(len(quotes) - 1, 0, -1):
|
|
|
|
"""
|
|
|
|
1. use json load to parse action
|
|
|
|
2. use plain text `Action: xxx` to parse action
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
action = json.loads(quotes[i].replace('```', ''))
|
|
|
|
action_name = action.get("action")
|
|
|
|
action_input = action.get("action_input")
|
|
|
|
agent_thought = agent_response.replace(quotes[i], '')
|
|
|
|
|
|
|
|
if action_name and action_input:
|
|
|
|
return AgentScratchpadUnit(
|
|
|
|
agent_response=content,
|
|
|
|
thought=agent_thought,
|
|
|
|
action_str=quotes[i],
|
|
|
|
action=AgentScratchpadUnit.Action(
|
|
|
|
action_name=action_name,
|
|
|
|
action_input=action_input,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
except:
|
|
|
|
# try to parse action from plain text
|
|
|
|
action_name = re.findall(r'action: (.*)', quotes[i], re.IGNORECASE)
|
|
|
|
action_input = re.findall(r'action input: (.*)', quotes[i], re.IGNORECASE)
|
|
|
|
# delete action from agent response
|
|
|
|
agent_thought = agent_response.replace(quotes[i], '')
|
|
|
|
# remove extra quotes
|
|
|
|
agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
|
|
|
|
# remove Action: xxx from agent thought
|
|
|
|
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
|
|
|
|
|
|
|
if action_name and action_input:
|
|
|
|
return AgentScratchpadUnit(
|
|
|
|
agent_response=content,
|
|
|
|
thought=agent_thought,
|
|
|
|
action_str=quotes[i],
|
|
|
|
action=AgentScratchpadUnit.Action(
|
|
|
|
action_name=action_name[0],
|
|
|
|
action_input=action_input[0],
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
def extra_json():
|
|
|
|
agent_response = content
|
|
|
|
# try to extract all json
|
|
|
|
structures, pair_match_stack = [], []
|
|
|
|
started_at, end_at = 0, 0
|
|
|
|
for i in range(len(content)):
|
|
|
|
if content[i] == '{':
|
|
|
|
pair_match_stack.append(i)
|
|
|
|
if len(pair_match_stack) == 1:
|
|
|
|
started_at = i
|
|
|
|
elif content[i] == '}':
|
|
|
|
begin = pair_match_stack.pop()
|
|
|
|
if not pair_match_stack:
|
|
|
|
end_at = i + 1
|
|
|
|
structures.append((content[begin:i+1], (started_at, end_at)))
|
|
|
|
|
|
|
|
# handle the last character
|
|
|
|
if pair_match_stack:
|
|
|
|
end_at = len(content)
|
|
|
|
structures.append((content[pair_match_stack[0]:], (started_at, end_at)))
|
|
|
|
|
|
|
|
for i in range(len(structures), 0, -1):
|
|
|
|
try:
|
|
|
|
json_content, (started_at, end_at) = structures[i - 1]
|
|
|
|
action = json.loads(json_content)
|
|
|
|
action_name = action.get("action")
|
|
|
|
action_input = action.get("action_input")
|
|
|
|
# delete json content from agent response
|
|
|
|
agent_thought = agent_response[:started_at] + agent_response[end_at:]
|
|
|
|
# remove extra quotes like ```(json)*\n\n```
|
|
|
|
agent_thought = re.sub(r'```(json)*\n*```', '', agent_thought, flags=re.DOTALL)
|
|
|
|
# remove Action: xxx from agent thought
|
|
|
|
agent_thought = re.sub(r'Action:.*', '', agent_thought, flags=re.IGNORECASE)
|
|
|
|
|
2024-01-30 15:25:37 +08:00
|
|
|
if action_name and action_input is not None:
|
2024-01-23 19:58:23 +08:00
|
|
|
return AgentScratchpadUnit(
|
|
|
|
agent_response=content,
|
|
|
|
thought=agent_thought,
|
|
|
|
action_str=json_content,
|
|
|
|
action=AgentScratchpadUnit.Action(
|
|
|
|
action_name=action_name,
|
|
|
|
action_input=action_input,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
except:
|
|
|
|
pass
|
|
|
|
|
|
|
|
agent_scratchpad = extra_quotes()
|
|
|
|
if agent_scratchpad:
|
|
|
|
return agent_scratchpad
|
|
|
|
agent_scratchpad = extra_json()
|
|
|
|
if agent_scratchpad:
|
|
|
|
return agent_scratchpad
|
|
|
|
|
|
|
|
return AgentScratchpadUnit(
|
|
|
|
agent_response=content,
|
|
|
|
thought=content,
|
|
|
|
action_str='',
|
|
|
|
action=None
|
|
|
|
)
|
|
|
|
|
|
|
|
def _check_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
|
|
|
agent_prompt_message: AgentPromptEntity,
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
check chain of thought prompt messages, a standard prompt message is like:
|
|
|
|
Respond to the human as helpfully and accurately as possible.
|
|
|
|
|
|
|
|
{{instruction}}
|
|
|
|
|
|
|
|
You have access to the following tools:
|
|
|
|
|
|
|
|
{{tools}}
|
|
|
|
|
|
|
|
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
|
|
Valid action values: "Final Answer" or {{tool_names}}
|
|
|
|
|
|
|
|
Provide only ONE action per $JSON_BLOB, as shown:
|
|
|
|
|
|
|
|
```
|
|
|
|
{
|
|
|
|
"action": $TOOL_NAME,
|
|
|
|
"action_input": $ACTION_INPUT
|
|
|
|
}
|
|
|
|
```
|
|
|
|
"""
|
|
|
|
|
|
|
|
# parse agent prompt message
|
|
|
|
first_prompt = agent_prompt_message.first_prompt
|
|
|
|
next_iteration = agent_prompt_message.next_iteration
|
|
|
|
|
|
|
|
if not isinstance(first_prompt, str) or not isinstance(next_iteration, str):
|
|
|
|
raise ValueError(f"first_prompt or next_iteration is required in CoT agent mode")
|
|
|
|
|
|
|
|
# check instruction, tools, and tool_names slots
|
|
|
|
if not first_prompt.find("{{instruction}}") >= 0:
|
|
|
|
raise ValueError("{{instruction}} is required in first_prompt")
|
|
|
|
if not first_prompt.find("{{tools}}") >= 0:
|
|
|
|
raise ValueError("{{tools}} is required in first_prompt")
|
|
|
|
if not first_prompt.find("{{tool_names}}") >= 0:
|
|
|
|
raise ValueError("{{tool_names}} is required in first_prompt")
|
|
|
|
|
|
|
|
if mode == "completion":
|
|
|
|
if not first_prompt.find("{{query}}") >= 0:
|
|
|
|
raise ValueError("{{query}} is required in first_prompt")
|
|
|
|
if not first_prompt.find("{{agent_scratchpad}}") >= 0:
|
|
|
|
raise ValueError("{{agent_scratchpad}} is required in first_prompt")
|
|
|
|
|
|
|
|
if mode == "completion":
|
|
|
|
if not next_iteration.find("{{observation}}") >= 0:
|
|
|
|
raise ValueError("{{observation}} is required in next_iteration")
|
|
|
|
|
2024-01-31 11:58:07 +08:00
|
|
|
def _convert_scratchpad_list_to_str(self, agent_scratchpad: List[AgentScratchpadUnit]) -> str:
|
2024-01-23 19:58:23 +08:00
|
|
|
"""
|
|
|
|
convert agent scratchpad list to str
|
|
|
|
"""
|
|
|
|
next_iteration = self.app_orchestration_config.agent.prompt.next_iteration
|
|
|
|
|
|
|
|
result = ''
|
|
|
|
for scratchpad in agent_scratchpad:
|
2024-01-23 21:59:09 +08:00
|
|
|
result += scratchpad.thought + next_iteration.replace("{{observation}}", scratchpad.observation or '') + "\n"
|
2024-01-23 19:58:23 +08:00
|
|
|
|
|
|
|
return result
|
|
|
|
|
2024-01-31 11:58:07 +08:00
|
|
|
def _organize_cot_prompt_messages(self, mode: Literal["completion", "chat"],
|
2024-01-23 19:58:23 +08:00
|
|
|
prompt_messages: List[PromptMessage],
|
|
|
|
tools: List[PromptMessageTool],
|
|
|
|
agent_scratchpad: List[AgentScratchpadUnit],
|
|
|
|
agent_prompt_message: AgentPromptEntity,
|
|
|
|
instruction: str,
|
|
|
|
input: str,
|
|
|
|
) -> List[PromptMessage]:
|
|
|
|
"""
|
2024-01-31 11:58:07 +08:00
|
|
|
organize chain of thought prompt messages, a standard prompt message is like:
|
2024-01-23 19:58:23 +08:00
|
|
|
Respond to the human as helpfully and accurately as possible.
|
|
|
|
|
|
|
|
{{instruction}}
|
|
|
|
|
|
|
|
You have access to the following tools:
|
|
|
|
|
|
|
|
{{tools}}
|
|
|
|
|
|
|
|
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
|
|
|
|
Valid action values: "Final Answer" or {{tool_names}}
|
|
|
|
|
|
|
|
Provide only ONE action per $JSON_BLOB, as shown:
|
|
|
|
|
|
|
|
```
|
|
|
|
{{{{
|
|
|
|
"action": $TOOL_NAME,
|
|
|
|
"action_input": $ACTION_INPUT
|
|
|
|
}}}}
|
|
|
|
```
|
|
|
|
"""
|
|
|
|
|
|
|
|
self._check_cot_prompt_messages(mode, agent_prompt_message)
|
|
|
|
|
|
|
|
# parse agent prompt message
|
|
|
|
first_prompt = agent_prompt_message.first_prompt
|
|
|
|
|
|
|
|
# parse tools
|
|
|
|
tools_str = self._jsonify_tool_prompt_messages(tools)
|
|
|
|
|
|
|
|
# parse tools name
|
|
|
|
tool_names = '"' + '","'.join([tool.name for tool in tools]) + '"'
|
|
|
|
|
|
|
|
# get system message
|
|
|
|
system_message = first_prompt.replace("{{instruction}}", instruction) \
|
|
|
|
.replace("{{tools}}", tools_str) \
|
|
|
|
.replace("{{tool_names}}", tool_names)
|
|
|
|
|
2024-01-31 11:58:07 +08:00
|
|
|
# organize prompt messages
|
2024-01-23 19:58:23 +08:00
|
|
|
if mode == "chat":
|
|
|
|
# override system message
|
|
|
|
overrided = False
|
|
|
|
prompt_messages = prompt_messages.copy()
|
|
|
|
for prompt_message in prompt_messages:
|
|
|
|
if isinstance(prompt_message, SystemPromptMessage):
|
|
|
|
prompt_message.content = system_message
|
|
|
|
overrided = True
|
|
|
|
break
|
|
|
|
|
|
|
|
if not overrided:
|
|
|
|
prompt_messages.insert(0, SystemPromptMessage(
|
|
|
|
content=system_message,
|
|
|
|
))
|
|
|
|
|
|
|
|
# add assistant message
|
|
|
|
if len(agent_scratchpad) > 0:
|
|
|
|
prompt_messages.append(AssistantPromptMessage(
|
2024-01-24 12:09:30 +08:00
|
|
|
content=(agent_scratchpad[-1].thought or '')
|
2024-01-23 19:58:23 +08:00
|
|
|
))
|
2024-01-24 12:09:30 +08:00
|
|
|
|
2024-01-23 19:58:23 +08:00
|
|
|
# add user message
|
|
|
|
if len(agent_scratchpad) > 0:
|
|
|
|
prompt_messages.append(UserPromptMessage(
|
2024-01-24 12:09:30 +08:00
|
|
|
content=(agent_scratchpad[-1].observation or ''),
|
2024-01-23 19:58:23 +08:00
|
|
|
))
|
|
|
|
|
|
|
|
return prompt_messages
|
|
|
|
elif mode == "completion":
|
|
|
|
# parse agent scratchpad
|
2024-01-31 11:58:07 +08:00
|
|
|
agent_scratchpad_str = self._convert_scratchpad_list_to_str(agent_scratchpad)
|
2024-01-23 19:58:23 +08:00
|
|
|
# parse prompt messages
|
|
|
|
return [UserPromptMessage(
|
|
|
|
content=first_prompt.replace("{{instruction}}", instruction)
|
|
|
|
.replace("{{tools}}", tools_str)
|
|
|
|
.replace("{{tool_names}}", tool_names)
|
|
|
|
.replace("{{query}}", input)
|
|
|
|
.replace("{{agent_scratchpad}}", agent_scratchpad_str),
|
|
|
|
)]
|
|
|
|
else:
|
|
|
|
raise ValueError(f"mode {mode} is not supported")
|
|
|
|
|
|
|
|
def _jsonify_tool_prompt_messages(self, tools: list[PromptMessageTool]) -> str:
|
|
|
|
"""
|
|
|
|
jsonify tool prompt messages
|
|
|
|
"""
|
|
|
|
tools = jsonable_encoder(tools)
|
|
|
|
try:
|
|
|
|
return json.dumps(tools, ensure_ascii=False)
|
|
|
|
except json.JSONDecodeError:
|
|
|
|
return json.dumps(tools)
|