dify/api/core/indexing_runner.py

596 lines
24 KiB
Python
Raw Normal View History

2023-05-15 08:51:32 +08:00
import datetime
import json
import re
import tempfile
import time
from pathlib import Path
from typing import Optional, List
from flask_login import current_user
2023-05-15 08:51:32 +08:00
from langchain.text_splitter import RecursiveCharacterTextSplitter
from llama_index import SimpleDirectoryReader
from llama_index.data_structs import Node
from llama_index.data_structs.node_v2 import DocumentRelationship
from llama_index.node_parser import SimpleNodeParser, NodeParser
from llama_index.readers.file.base import DEFAULT_FILE_EXTRACTOR
from llama_index.readers.file.markdown_parser import MarkdownParser
from core.data_source.notion import NotionPageReader
from core.index.readers.xlsx_parser import XLSXParser
2023-05-15 08:51:32 +08:00
from core.docstore.dataset_docstore import DatesetDocumentStore
from core.index.keyword_table_index import KeywordTableIndex
from core.index.readers.html_parser import HTMLParser
2023-06-06 19:51:40 +08:00
from core.index.readers.markdown_parser import MarkdownParser
2023-05-15 08:51:32 +08:00
from core.index.readers.pdf_parser import PDFParser
from core.index.spiltter.fixed_text_splitter import FixedRecursiveCharacterTextSplitter
2023-05-15 08:51:32 +08:00
from core.index.vector_index import VectorIndex
from core.llm.token_calculator import TokenCalculator
from extensions.ext_database import db
from extensions.ext_redis import redis_client
from extensions.ext_storage import storage
from models.dataset import Document, Dataset, DocumentSegment, DatasetProcessRule
from models.model import UploadFile
from models.source import DataSourceBinding
2023-05-15 08:51:32 +08:00
class IndexingRunner:
def __init__(self, embedding_model_name: str = "text-embedding-ada-002"):
self.storage = storage
self.embedding_model_name = embedding_model_name
def run(self, documents: List[Document]):
2023-05-15 08:51:32 +08:00
"""Run the indexing process."""
for document in documents:
# get dataset
dataset = Dataset.query.filter_by(
id=document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# load file
text_docs = self._load_data(document)
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
first()
# get node parser for splitting
node_parser = self._get_node_parser(processing_rule)
# split to nodes
nodes = self._step_split(
text_docs=text_docs,
node_parser=node_parser,
dataset=dataset,
document=document,
processing_rule=processing_rule
)
2023-05-15 08:51:32 +08:00
# build index
self._build_index(
dataset=dataset,
document=document,
nodes=nodes
)
2023-05-15 08:51:32 +08:00
def run_in_splitting_status(self, document: Document):
"""Run the indexing process when the index_status is splitting."""
# get dataset
dataset = Dataset.query.filter_by(
id=document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id,
document_id=document.id
).all()
db.session.delete(document_segments)
db.session.commit()
# load file
text_docs = self._load_data(document)
# get the process rule
processing_rule = db.session.query(DatasetProcessRule). \
filter(DatasetProcessRule.id == document.dataset_process_rule_id). \
first()
# get node parser for splitting
node_parser = self._get_node_parser(processing_rule)
# split to nodes
nodes = self._step_split(
text_docs=text_docs,
node_parser=node_parser,
dataset=dataset,
document=document,
processing_rule=processing_rule
)
# build index
self._build_index(
dataset=dataset,
document=document,
nodes=nodes
)
def run_in_indexing_status(self, document: Document):
"""Run the indexing process when the index_status is indexing."""
# get dataset
dataset = Dataset.query.filter_by(
id=document.dataset_id
).first()
if not dataset:
raise ValueError("no dataset found")
# get exist document_segment list and delete
document_segments = DocumentSegment.query.filter_by(
dataset_id=dataset.id,
document_id=document.id
).all()
nodes = []
if document_segments:
for document_segment in document_segments:
# transform segment to node
if document_segment.status != "completed":
relationships = {
DocumentRelationship.SOURCE: document_segment.document_id,
}
previous_segment = document_segment.previous_segment
if previous_segment:
relationships[DocumentRelationship.PREVIOUS] = previous_segment.index_node_id
next_segment = document_segment.next_segment
if next_segment:
relationships[DocumentRelationship.NEXT] = next_segment.index_node_id
node = Node(
doc_id=document_segment.index_node_id,
doc_hash=document_segment.index_node_hash,
text=document_segment.content,
extra_info=None,
node_info=None,
relationships=relationships
)
nodes.append(node)
# build index
self._build_index(
dataset=dataset,
document=document,
nodes=nodes
)
def file_indexing_estimate(self, file_details: List[UploadFile], tmp_processing_rule: dict) -> dict:
2023-05-15 08:51:32 +08:00
"""
Estimate the indexing for the document.
"""
tokens = 0
preview_texts = []
total_segments = 0
for file_detail in file_details:
# load data from file
text_docs = self._load_data_from_file(file_detail)
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"],
rules=json.dumps(tmp_processing_rule["rules"])
)
2023-05-15 08:51:32 +08:00
# get node parser for splitting
node_parser = self._get_node_parser(processing_rule)
2023-05-15 08:51:32 +08:00
# split to nodes
nodes = self._split_to_nodes(
text_docs=text_docs,
node_parser=node_parser,
processing_rule=processing_rule
)
total_segments += len(nodes)
for node in nodes:
if len(preview_texts) < 5:
preview_texts.append(node.get_text())
2023-05-15 08:51:32 +08:00
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
2023-05-15 08:51:32 +08:00
return {
"total_segments": total_segments,
"tokens": tokens,
"total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
"currency": TokenCalculator.get_currency(self.embedding_model_name),
"preview": preview_texts
}
def notion_indexing_estimate(self, notion_info_list: list, tmp_processing_rule: dict) -> dict:
"""
Estimate the indexing for the document.
"""
# load data from notion
2023-05-15 08:51:32 +08:00
tokens = 0
preview_texts = []
total_segments = 0
for notion_info in notion_info_list:
workspace_id = notion_info['workspace_id']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == current_user.current_tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
reader = NotionPageReader(integration_token=data_source_binding.access_token)
for page in notion_info['pages']:
if page['type'] == 'page':
page_ids = [page['page_id']]
documents = reader.load_data_as_documents(page_ids=page_ids)
elif page['type'] == 'database':
documents = reader.load_data_as_documents(database_id=page['page_id'])
else:
documents = []
processing_rule = DatasetProcessRule(
mode=tmp_processing_rule["mode"],
rules=json.dumps(tmp_processing_rule["rules"])
)
# get node parser for splitting
node_parser = self._get_node_parser(processing_rule)
# split to nodes
nodes = self._split_to_nodes(
text_docs=documents,
node_parser=node_parser,
processing_rule=processing_rule
)
total_segments += len(nodes)
for node in nodes:
if len(preview_texts) < 5:
preview_texts.append(node.get_text())
tokens += TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text())
2023-05-15 08:51:32 +08:00
return {
"total_segments": total_segments,
2023-05-15 08:51:32 +08:00
"tokens": tokens,
"total_price": '{:f}'.format(TokenCalculator.get_token_price(self.embedding_model_name, tokens)),
"currency": TokenCalculator.get_currency(self.embedding_model_name),
"preview": preview_texts
}
def _load_data(self, document: Document) -> List[Document]:
# load file
if document.data_source_type not in ["upload_file", "notion_import"]:
2023-05-15 08:51:32 +08:00
return []
data_source_info = document.data_source_info_dict
text_docs = []
if document.data_source_type == 'upload_file':
if not data_source_info or 'upload_file_id' not in data_source_info:
raise ValueError("no upload file found")
file_detail = db.session.query(UploadFile). \
filter(UploadFile.id == data_source_info['upload_file_id']). \
one_or_none()
text_docs = self._load_data_from_file(file_detail)
elif document.data_source_type == 'notion_import':
if not data_source_info or 'notion_page_id' not in data_source_info \
or 'notion_workspace_id' not in data_source_info:
raise ValueError("no notion page found")
workspace_id = data_source_info['notion_workspace_id']
page_id = data_source_info['notion_page_id']
page_type = data_source_info['type']
data_source_binding = DataSourceBinding.query.filter(
db.and_(
DataSourceBinding.tenant_id == document.tenant_id,
DataSourceBinding.provider == 'notion',
DataSourceBinding.disabled == False,
DataSourceBinding.source_info['workspace_id'] == f'"{workspace_id}"'
)
).first()
if not data_source_binding:
raise ValueError('Data source binding not found.')
if page_type == 'page':
# add page last_edited_time to data_source_info
self._get_notion_page_last_edited_time(page_id, data_source_binding.access_token, document)
text_docs = self._load_page_data_from_notion(page_id, data_source_binding.access_token)
elif page_type == 'database':
# add page last_edited_time to data_source_info
self._get_notion_database_last_edited_time(page_id, data_source_binding.access_token, document)
text_docs = self._load_database_data_from_notion(page_id, data_source_binding.access_token)
2023-05-15 08:51:32 +08:00
# update document status to splitting
self._update_document_index_status(
document_id=document.id,
after_indexing_status="splitting",
extra_update_params={
Document.word_count: sum([len(text_doc.text) for text_doc in text_docs]),
Document.parsing_completed_at: datetime.datetime.utcnow()
}
)
# replace doc id to document model id
for text_doc in text_docs:
# remove invalid symbol
text_doc.text = self.filter_string(text_doc.get_text())
text_doc.doc_id = document.id
return text_docs
def filter_string(self, text):
pattern = re.compile('[\x00-\x08\x0B\x0C\x0E-\x1F\x7F\x80-\xFF]')
return pattern.sub('', text)
def _load_data_from_file(self, upload_file: UploadFile) -> List[Document]:
with tempfile.TemporaryDirectory() as temp_dir:
suffix = Path(upload_file.key).suffix
filepath = f"{temp_dir}/{next(tempfile._get_candidate_names())}{suffix}"
self.storage.download(upload_file.key, filepath)
file_extractor = DEFAULT_FILE_EXTRACTOR.copy()
file_extractor[".markdown"] = MarkdownParser()
2023-06-06 19:51:40 +08:00
file_extractor[".md"] = MarkdownParser()
2023-05-15 08:51:32 +08:00
file_extractor[".html"] = HTMLParser()
file_extractor[".htm"] = HTMLParser()
file_extractor[".pdf"] = PDFParser({'upload_file': upload_file})
file_extractor[".xlsx"] = XLSXParser()
2023-05-15 08:51:32 +08:00
loader = SimpleDirectoryReader(input_files=[filepath], file_extractor=file_extractor)
text_docs = loader.load_data()
return text_docs
def _load_page_data_from_notion(self, page_id: str, access_token: str) -> List[Document]:
page_ids = [page_id]
reader = NotionPageReader(integration_token=access_token)
text_docs = reader.load_data_as_documents(page_ids=page_ids)
return text_docs
def _load_database_data_from_notion(self, database_id: str, access_token: str) -> List[Document]:
reader = NotionPageReader(integration_token=access_token)
text_docs = reader.load_data_as_documents(database_id=database_id)
return text_docs
def _get_notion_page_last_edited_time(self, page_id: str, access_token: str, document: Document):
reader = NotionPageReader(integration_token=access_token)
last_edited_time = reader.get_page_last_edited_time(page_id)
data_source_info = document.data_source_info_dict
data_source_info['last_edited_time'] = last_edited_time
update_params = {
Document.data_source_info: json.dumps(data_source_info)
}
Document.query.filter_by(id=document.id).update(update_params)
db.session.commit()
def _get_notion_database_last_edited_time(self, page_id: str, access_token: str, document: Document):
reader = NotionPageReader(integration_token=access_token)
last_edited_time = reader.get_database_last_edited_time(page_id)
data_source_info = document.data_source_info_dict
data_source_info['last_edited_time'] = last_edited_time
update_params = {
Document.data_source_info: json.dumps(data_source_info)
}
Document.query.filter_by(id=document.id).update(update_params)
db.session.commit()
2023-05-15 08:51:32 +08:00
def _get_node_parser(self, processing_rule: DatasetProcessRule) -> NodeParser:
"""
Get the NodeParser object according to the processing rule.
"""
if processing_rule.mode == "custom":
# The user-defined segmentation rule
rules = json.loads(processing_rule.rules)
segmentation = rules["segmentation"]
if segmentation["max_tokens"] < 50 or segmentation["max_tokens"] > 1000:
raise ValueError("Custom segment length should be between 50 and 1000.")
separator = segmentation["separator"]
if separator:
2023-05-15 08:51:32 +08:00
separator = separator.replace('\\n', '\n')
character_splitter = FixedRecursiveCharacterTextSplitter.from_tiktoken_encoder(
2023-05-15 08:51:32 +08:00
chunk_size=segmentation["max_tokens"],
chunk_overlap=0,
fixed_separator=separator,
separators=["\n\n", "", ".", " ", ""]
2023-05-15 08:51:32 +08:00
)
else:
# Automatic segmentation
character_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
chunk_size=DatasetProcessRule.AUTOMATIC_RULES['segmentation']['max_tokens'],
chunk_overlap=0,
separators=["\n\n", "", ".", " ", ""]
)
return SimpleNodeParser(text_splitter=character_splitter, include_extra_info=True)
def _step_split(self, text_docs: List[Document], node_parser: NodeParser,
dataset: Dataset, document: Document, processing_rule: DatasetProcessRule) -> List[Node]:
"""
Split the text documents into nodes and save them to the document segment.
"""
nodes = self._split_to_nodes(
text_docs=text_docs,
node_parser=node_parser,
processing_rule=processing_rule
)
# save node to document segment
doc_store = DatesetDocumentStore(
dataset=dataset,
user_id=document.created_by,
embedding_model_name=self.embedding_model_name,
document_id=document.id
)
# add document segments
2023-05-15 08:51:32 +08:00
doc_store.add_documents(nodes)
# update document status to indexing
cur_time = datetime.datetime.utcnow()
self._update_document_index_status(
document_id=document.id,
after_indexing_status="indexing",
extra_update_params={
Document.cleaning_completed_at: cur_time,
Document.splitting_completed_at: cur_time,
}
)
# update segment status to indexing
self._update_segments_by_document(
document_id=document.id,
update_params={
DocumentSegment.status: "indexing",
DocumentSegment.indexing_at: datetime.datetime.utcnow()
}
)
return nodes
def _split_to_nodes(self, text_docs: List[Document], node_parser: NodeParser,
processing_rule: DatasetProcessRule) -> List[Node]:
"""
Split the text documents into nodes.
"""
all_nodes = []
for text_doc in text_docs:
# document clean
document_text = self._document_clean(text_doc.get_text(), processing_rule)
text_doc.text = document_text
# parse document to nodes
nodes = node_parser.get_nodes_from_documents([text_doc])
nodes = [node for node in nodes if node.text is not None and node.text.strip()]
2023-05-15 08:51:32 +08:00
all_nodes.extend(nodes)
return all_nodes
def _document_clean(self, text: str, processing_rule: DatasetProcessRule) -> str:
"""
Clean the document text according to the processing rules.
"""
if processing_rule.mode == "automatic":
rules = DatasetProcessRule.AUTOMATIC_RULES
else:
rules = json.loads(processing_rule.rules) if processing_rule.rules else {}
if 'pre_processing_rules' in rules:
pre_processing_rules = rules["pre_processing_rules"]
for pre_processing_rule in pre_processing_rules:
if pre_processing_rule["id"] == "remove_extra_spaces" and pre_processing_rule["enabled"] is True:
# Remove extra spaces
pattern = r'\n{3,}'
text = re.sub(pattern, '\n\n', text)
pattern = r'[\t\f\r\x20\u00a0\u1680\u180e\u2000-\u200a\u202f\u205f\u3000]{2,}'
text = re.sub(pattern, ' ', text)
elif pre_processing_rule["id"] == "remove_urls_emails" and pre_processing_rule["enabled"] is True:
# Remove email
pattern = r'([a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+)'
text = re.sub(pattern, '', text)
# Remove URL
pattern = r'https?://[^\s]+'
text = re.sub(pattern, '', text)
return text
def _build_index(self, dataset: Dataset, document: Document, nodes: List[Node]) -> None:
"""
Build the index for the document.
"""
vector_index = VectorIndex(dataset=dataset)
keyword_table_index = KeywordTableIndex(dataset=dataset)
# chunk nodes by chunk size
indexing_start_at = time.perf_counter()
tokens = 0
chunk_size = 100
for i in range(0, len(nodes), chunk_size):
# check document is paused
self._check_document_paused_status(document.id)
chunk_nodes = nodes[i:i + chunk_size]
tokens += sum(
TokenCalculator.get_num_tokens(self.embedding_model_name, node.get_text()) for node in chunk_nodes
)
# save vector index
if dataset.indexing_technique == "high_quality":
vector_index.add_nodes(chunk_nodes)
# save keyword index
keyword_table_index.add_nodes(chunk_nodes)
node_ids = [node.doc_id for node in chunk_nodes]
db.session.query(DocumentSegment).filter(
DocumentSegment.document_id == document.id,
DocumentSegment.index_node_id.in_(node_ids),
DocumentSegment.status == "indexing"
).update({
DocumentSegment.status: "completed",
DocumentSegment.completed_at: datetime.datetime.utcnow()
})
db.session.commit()
indexing_end_at = time.perf_counter()
# update document status to completed
self._update_document_index_status(
document_id=document.id,
after_indexing_status="completed",
extra_update_params={
Document.tokens: tokens,
Document.completed_at: datetime.datetime.utcnow(),
Document.indexing_latency: indexing_end_at - indexing_start_at,
}
)
def _check_document_paused_status(self, document_id: str):
indexing_cache_key = 'document_{}_is_paused'.format(document_id)
result = redis_client.get(indexing_cache_key)
if result:
raise DocumentIsPausedException()
def _update_document_index_status(self, document_id: str, after_indexing_status: str,
extra_update_params: Optional[dict] = None) -> None:
"""
Update the document indexing status.
"""
count = Document.query.filter_by(id=document_id, is_paused=True).count()
if count > 0:
raise DocumentIsPausedException()
update_params = {
Document.indexing_status: after_indexing_status
}
if extra_update_params:
update_params.update(extra_update_params)
Document.query.filter_by(id=document_id).update(update_params)
db.session.commit()
def _update_segments_by_document(self, document_id: str, update_params: dict) -> None:
"""
Update the document segment by document id.
"""
DocumentSegment.query.filter_by(document_id=document_id).update(update_params)
db.session.commit()
class DocumentIsPausedException(Exception):
pass