2023-05-15 08:51:32 +08:00
|
|
|
import logging
|
|
|
|
import time
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
import numpy as np
|
2023-06-25 16:49:14 +08:00
|
|
|
from flask import current_app
|
|
|
|
from langchain.embeddings.base import Embeddings
|
|
|
|
from langchain.schema import Document
|
2023-05-15 08:51:32 +08:00
|
|
|
from sklearn.manifold import TSNE
|
|
|
|
|
2023-06-25 16:49:14 +08:00
|
|
|
from core.embedding.cached_embedding import CacheEmbedding
|
|
|
|
from core.index.vector_index.vector_index import VectorIndex
|
2023-08-12 00:57:00 +08:00
|
|
|
from core.model_providers.model_factory import ModelFactory
|
2023-05-15 08:51:32 +08:00
|
|
|
from extensions.ext_database import db
|
|
|
|
from models.account import Account
|
|
|
|
from models.dataset import Dataset, DocumentSegment, DatasetQuery
|
|
|
|
|
|
|
|
|
|
|
|
class HitTestingService:
|
|
|
|
@classmethod
|
|
|
|
def retrieve(cls, dataset: Dataset, query: str, account: Account, limit: int = 10) -> dict:
|
2023-06-25 16:49:14 +08:00
|
|
|
if dataset.available_document_count == 0 or dataset.available_document_count == 0:
|
|
|
|
return {
|
|
|
|
"query": {
|
|
|
|
"content": query,
|
|
|
|
"tsne_position": {'x': 0, 'y': 0},
|
|
|
|
},
|
|
|
|
"records": []
|
|
|
|
}
|
2023-05-15 08:51:32 +08:00
|
|
|
|
2023-08-12 00:57:00 +08:00
|
|
|
embedding_model = ModelFactory.get_embedding_model(
|
|
|
|
tenant_id=dataset.tenant_id
|
2023-05-15 08:51:32 +08:00
|
|
|
)
|
|
|
|
|
2023-08-12 00:57:00 +08:00
|
|
|
embeddings = CacheEmbedding(embedding_model)
|
2023-06-25 16:49:14 +08:00
|
|
|
|
|
|
|
vector_index = VectorIndex(
|
|
|
|
dataset=dataset,
|
|
|
|
config=current_app.config,
|
|
|
|
embeddings=embeddings
|
2023-05-15 08:51:32 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
start = time.perf_counter()
|
2023-06-25 16:49:14 +08:00
|
|
|
documents = vector_index.search(
|
|
|
|
query,
|
|
|
|
search_type='similarity_score_threshold',
|
|
|
|
search_kwargs={
|
|
|
|
'k': 10
|
|
|
|
}
|
|
|
|
)
|
2023-05-15 08:51:32 +08:00
|
|
|
end = time.perf_counter()
|
|
|
|
logging.debug(f"Hit testing retrieve in {end - start:0.4f} seconds")
|
|
|
|
|
|
|
|
dataset_query = DatasetQuery(
|
|
|
|
dataset_id=dataset.id,
|
|
|
|
content=query,
|
|
|
|
source='hit_testing',
|
|
|
|
created_by_role='account',
|
|
|
|
created_by=account.id
|
|
|
|
)
|
|
|
|
|
|
|
|
db.session.add(dataset_query)
|
|
|
|
db.session.commit()
|
|
|
|
|
2023-06-25 16:49:14 +08:00
|
|
|
return cls.compact_retrieve_response(dataset, embeddings, query, documents)
|
2023-05-15 08:51:32 +08:00
|
|
|
|
|
|
|
@classmethod
|
2023-06-25 16:49:14 +08:00
|
|
|
def compact_retrieve_response(cls, dataset: Dataset, embeddings: Embeddings, query: str, documents: List[Document]):
|
|
|
|
text_embeddings = [
|
|
|
|
embeddings.embed_query(query)
|
2023-05-15 08:51:32 +08:00
|
|
|
]
|
|
|
|
|
2023-06-25 16:49:14 +08:00
|
|
|
text_embeddings.extend(embeddings.embed_documents([document.page_content for document in documents]))
|
2023-05-15 08:51:32 +08:00
|
|
|
|
2023-06-25 16:49:14 +08:00
|
|
|
tsne_position_data = cls.get_tsne_positions_from_embeddings(text_embeddings)
|
2023-05-15 08:51:32 +08:00
|
|
|
|
|
|
|
query_position = tsne_position_data.pop(0)
|
|
|
|
|
|
|
|
i = 0
|
|
|
|
records = []
|
2023-06-25 16:49:14 +08:00
|
|
|
for document in documents:
|
|
|
|
index_node_id = document.metadata['doc_id']
|
2023-05-15 08:51:32 +08:00
|
|
|
|
|
|
|
segment = db.session.query(DocumentSegment).filter(
|
|
|
|
DocumentSegment.dataset_id == dataset.id,
|
|
|
|
DocumentSegment.enabled == True,
|
|
|
|
DocumentSegment.status == 'completed',
|
|
|
|
DocumentSegment.index_node_id == index_node_id
|
|
|
|
).first()
|
|
|
|
|
|
|
|
if not segment:
|
|
|
|
i += 1
|
|
|
|
continue
|
|
|
|
|
|
|
|
record = {
|
|
|
|
"segment": segment,
|
2023-06-25 16:49:14 +08:00
|
|
|
"score": document.metadata['score'],
|
2023-05-15 08:51:32 +08:00
|
|
|
"tsne_position": tsne_position_data[i]
|
|
|
|
}
|
|
|
|
|
|
|
|
records.append(record)
|
|
|
|
|
|
|
|
i += 1
|
|
|
|
|
|
|
|
return {
|
|
|
|
"query": {
|
2023-06-25 16:49:14 +08:00
|
|
|
"content": query,
|
2023-05-15 08:51:32 +08:00
|
|
|
"tsne_position": query_position,
|
|
|
|
},
|
|
|
|
"records": records
|
|
|
|
}
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def get_tsne_positions_from_embeddings(cls, embeddings: list):
|
|
|
|
embedding_length = len(embeddings)
|
|
|
|
if embedding_length <= 1:
|
|
|
|
return [{'x': 0, 'y': 0}]
|
|
|
|
|
|
|
|
concatenate_data = np.array(embeddings).reshape(embedding_length, -1)
|
|
|
|
# concatenate_data = np.concatenate(embeddings)
|
|
|
|
|
|
|
|
perplexity = embedding_length / 2 + 1
|
|
|
|
if perplexity >= embedding_length:
|
|
|
|
perplexity = max(embedding_length - 1, 1)
|
|
|
|
|
|
|
|
tsne = TSNE(n_components=2, perplexity=perplexity, early_exaggeration=12.0)
|
|
|
|
data_tsne = tsne.fit_transform(concatenate_data)
|
|
|
|
|
|
|
|
tsne_position_data = []
|
|
|
|
for i in range(len(data_tsne)):
|
|
|
|
tsne_position_data.append({'x': float(data_tsne[i][0]), 'y': float(data_tsne[i][1])})
|
|
|
|
|
|
|
|
return tsne_position_data
|