dify/api/core/agent/fc_agent_runner.py

414 lines
17 KiB
Python
Raw Normal View History

import json
import logging
from collections.abc import Generator
from typing import Any, Union
from core.agent.base_agent_runner import BaseAgentRunner
from core.app.apps.base_app_queue_manager import PublishFrom
from core.app.entities.queue_entities import QueueAgentThoughtEvent, QueueMessageEndEvent, QueueMessageFileEvent
2024-02-01 18:11:57 +08:00
from core.model_runtime.entities.llm_entities import LLMResult, LLMResultChunk, LLMResultChunkDelta, LLMUsage
from core.model_runtime.entities.message_entities import (
AssistantPromptMessage,
PromptMessage,
PromptMessageTool,
SystemPromptMessage,
ToolPromptMessage,
UserPromptMessage,
)
from core.tools.entities.tool_entities import ToolInvokeMeta
from core.tools.tool_engine import ToolEngine
from models.model import Conversation, Message, MessageAgentThought
logger = logging.getLogger(__name__)
class FunctionCallAgentRunner(BaseAgentRunner):
2024-01-30 15:25:37 +08:00
def run(self, conversation: Conversation,
message: Message,
query: str,
) -> Generator[LLMResultChunk, None, None]:
"""
Run FunctionCall agent application
"""
app_generate_entity = self.application_generate_entity
app_config = self.app_config
prompt_template = app_config.prompt_template.simple_prompt_template or ''
prompt_messages = self.history_prompt_messages
prompt_messages = self.organize_prompt_messages(
prompt_template=prompt_template,
query=query,
prompt_messages=prompt_messages
)
# convert tools into ModelRuntime Tool format
prompt_messages_tools: list[PromptMessageTool] = []
tool_instances = {}
for tool in app_config.agent.tools if app_config.agent else []:
try:
prompt_tool, tool_entity = self._convert_tool_to_prompt_message_tool(tool)
except Exception:
# api tool may be deleted
continue
# save tool entity
tool_instances[tool.tool_name] = tool_entity
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# convert dataset tools into ModelRuntime Tool format
for dataset_tool in self.dataset_tools:
prompt_tool = self._convert_dataset_retriever_tool_to_prompt_message_tool(dataset_tool)
# save prompt tool
prompt_messages_tools.append(prompt_tool)
# save tool entity
tool_instances[dataset_tool.identity.name] = dataset_tool
iteration_step = 1
max_iteration_steps = min(app_config.agent.max_iteration, 5) + 1
# continue to run until there is not any tool call
function_call_state = True
agent_thoughts: list[MessageAgentThought] = []
llm_usage = {
'usage': None
}
final_answer = ''
def increase_usage(final_llm_usage_dict: dict[str, LLMUsage], usage: LLMUsage):
if not final_llm_usage_dict['usage']:
final_llm_usage_dict['usage'] = usage
else:
llm_usage = final_llm_usage_dict['usage']
llm_usage.prompt_tokens += usage.prompt_tokens
llm_usage.completion_tokens += usage.completion_tokens
llm_usage.prompt_price += usage.prompt_price
llm_usage.completion_price += usage.completion_price
2024-01-30 15:25:37 +08:00
model_instance = self.model_instance
while function_call_state and iteration_step <= max_iteration_steps:
function_call_state = False
if iteration_step == max_iteration_steps:
# the last iteration, remove all tools
prompt_messages_tools = []
message_file_ids = []
agent_thought = self.create_agent_thought(
message_id=message.id,
message='',
tool_name='',
tool_input='',
messages_ids=message_file_ids
)
2024-03-04 14:15:53 +08:00
# recalc llm max tokens
2024-03-04 13:32:17 +08:00
self.recalc_llm_max_tokens(self.model_config, prompt_messages)
# invoke model
2024-01-30 15:25:37 +08:00
chunks: Union[Generator[LLMResultChunk, None, None], LLMResult] = model_instance.invoke_llm(
prompt_messages=prompt_messages,
model_parameters=app_generate_entity.model_config.parameters,
tools=prompt_messages_tools,
stop=app_generate_entity.model_config.stop,
2024-01-30 15:25:37 +08:00
stream=self.stream_tool_call,
user=self.user_id,
callbacks=[],
)
tool_calls: list[tuple[str, str, dict[str, Any]]] = []
# save full response
response = ''
# save tool call names and inputs
tool_call_names = ''
tool_call_inputs = ''
current_llm_usage = None
2024-01-30 15:25:37 +08:00
if self.stream_tool_call:
2024-02-01 15:30:50 +08:00
is_first_chunk = True
2024-01-30 15:25:37 +08:00
for chunk in chunks:
2024-02-01 15:30:50 +08:00
if is_first_chunk:
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
2024-02-01 15:30:50 +08:00
is_first_chunk = False
2024-01-30 15:25:37 +08:00
# check if there is any tool call
if self.check_tool_calls(chunk):
function_call_state = True
tool_calls.extend(self.extract_tool_calls(chunk))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
}, ensure_ascii=False)
except json.JSONDecodeError as e:
# ensure ascii to avoid encoding error
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
if chunk.delta.message and chunk.delta.message.content:
if isinstance(chunk.delta.message.content, list):
for content in chunk.delta.message.content:
response += content.data
else:
response += chunk.delta.message.content
if chunk.delta.usage:
increase_usage(llm_usage, chunk.delta.usage)
current_llm_usage = chunk.delta.usage
yield chunk
else:
result: LLMResult = chunks
# check if there is any tool call
2024-01-30 15:25:37 +08:00
if self.check_blocking_tool_calls(result):
function_call_state = True
2024-01-30 15:25:37 +08:00
tool_calls.extend(self.extract_blocking_tool_calls(result))
tool_call_names = ';'.join([tool_call[1] for tool_call in tool_calls])
try:
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
}, ensure_ascii=False)
except json.JSONDecodeError as e:
# ensure ascii to avoid encoding error
tool_call_inputs = json.dumps({
tool_call[1]: tool_call[2] for tool_call in tool_calls
})
2024-01-30 15:25:37 +08:00
if result.usage:
increase_usage(llm_usage, result.usage)
current_llm_usage = result.usage
if result.message and result.message.content:
if isinstance(result.message.content, list):
for content in result.message.content:
response += content.data
else:
2024-01-30 15:25:37 +08:00
response += result.message.content
if not result.message.content:
result.message.content = ''
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
2024-02-01 15:30:50 +08:00
2024-01-30 15:25:37 +08:00
yield LLMResultChunk(
model=model_instance.model,
prompt_messages=result.prompt_messages,
system_fingerprint=result.system_fingerprint,
delta=LLMResultChunkDelta(
index=0,
message=result.message,
usage=result.usage,
)
)
2024-04-09 15:30:09 +08:00
assistant_message = AssistantPromptMessage(
content='',
tool_calls=[]
)
2024-01-30 15:25:37 +08:00
if tool_calls:
2024-04-09 15:30:09 +08:00
assistant_message.tool_calls=[
AssistantPromptMessage.ToolCall(
2024-01-30 15:25:37 +08:00
id=tool_call[0],
type='function',
function=AssistantPromptMessage.ToolCall.ToolCallFunction(
name=tool_call[1],
arguments=json.dumps(tool_call[2], ensure_ascii=False)
)
2024-04-09 15:30:09 +08:00
) for tool_call in tool_calls
]
else:
assistant_message.content = response
prompt_messages.append(assistant_message)
# save thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=tool_call_names,
tool_input=tool_call_inputs,
thought=response,
tool_invoke_meta=None,
observation=None,
answer=response,
messages_ids=[],
llm_usage=current_llm_usage
)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
final_answer += response + '\n'
# call tools
tool_responses = []
for tool_call_id, tool_call_name, tool_call_args in tool_calls:
tool_instance = tool_instances.get(tool_call_name)
if not tool_instance:
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": f"there is not a tool named {tool_call_name}",
"meta": ToolInvokeMeta.error_instance(f"there is not a tool named {tool_call_name}").to_dict()
}
else:
# invoke tool
tool_invoke_response, message_files, tool_invoke_meta = ToolEngine.agent_invoke(
tool=tool_instance,
tool_parameters=tool_call_args,
user_id=self.user_id,
tenant_id=self.tenant_id,
message=self.message,
invoke_from=self.application_generate_entity.invoke_from,
agent_tool_callback=self.agent_callback,
)
# publish files
for message_file, save_as in message_files:
if save_as:
self.variables_pool.set_file(tool_name=tool_call_name, value=message_file.id, name=save_as)
# publish message file
self.queue_manager.publish(QueueMessageFileEvent(
message_file_id=message_file.id
), PublishFrom.APPLICATION_MANAGER)
# add message file ids
message_file_ids.append(message_file.id)
tool_response = {
"tool_call_id": tool_call_id,
"tool_call_name": tool_call_name,
"tool_response": tool_invoke_response,
"meta": tool_invoke_meta.to_dict()
}
tool_responses.append(tool_response)
prompt_messages = self.organize_prompt_messages(
prompt_template=prompt_template,
query=None,
tool_call_id=tool_call_id,
tool_call_name=tool_call_name,
tool_response=tool_response['tool_response'],
prompt_messages=prompt_messages,
)
if len(tool_responses) > 0:
# save agent thought
self.save_agent_thought(
agent_thought=agent_thought,
tool_name=None,
tool_input=None,
thought=None,
tool_invoke_meta={
tool_response['tool_call_name']: tool_response['meta']
for tool_response in tool_responses
},
observation={
tool_response['tool_call_name']: tool_response['tool_response']
for tool_response in tool_responses
},
answer=None,
messages_ids=message_file_ids
)
self.queue_manager.publish(QueueAgentThoughtEvent(
agent_thought_id=agent_thought.id
), PublishFrom.APPLICATION_MANAGER)
# update prompt tool
for prompt_tool in prompt_messages_tools:
self.update_prompt_message_tool(tool_instances[prompt_tool.name], prompt_tool)
iteration_step += 1
self.update_db_variables(self.variables_pool, self.db_variables_pool)
# publish end event
self.queue_manager.publish(QueueMessageEndEvent(llm_result=LLMResult(
model=model_instance.model,
prompt_messages=prompt_messages,
message=AssistantPromptMessage(
content=final_answer
),
2024-01-24 15:34:17 +08:00
usage=llm_usage['usage'] if llm_usage['usage'] else LLMUsage.empty_usage(),
system_fingerprint=''
)), PublishFrom.APPLICATION_MANAGER)
def check_tool_calls(self, llm_result_chunk: LLMResultChunk) -> bool:
"""
Check if there is any tool call in llm result chunk
"""
if llm_result_chunk.delta.message.tool_calls:
return True
return False
2024-01-30 15:25:37 +08:00
def check_blocking_tool_calls(self, llm_result: LLMResult) -> bool:
"""
Check if there is any blocking tool call in llm result
"""
if llm_result.message.tool_calls:
return True
return False
def extract_tool_calls(self, llm_result_chunk: LLMResultChunk) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
"""
Extract tool calls from llm result chunk
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result_chunk.delta.message.tool_calls:
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
))
return tool_calls
2024-01-30 15:25:37 +08:00
def extract_blocking_tool_calls(self, llm_result: LLMResult) -> Union[None, list[tuple[str, str, dict[str, Any]]]]:
2024-01-30 15:25:37 +08:00
"""
Extract blocking tool calls from llm result
Returns:
List[Tuple[str, str, Dict[str, Any]]]: [(tool_call_id, tool_call_name, tool_call_args)]
"""
tool_calls = []
for prompt_message in llm_result.message.tool_calls:
tool_calls.append((
prompt_message.id,
prompt_message.function.name,
json.loads(prompt_message.function.arguments),
))
return tool_calls
def organize_prompt_messages(self, prompt_template: str,
query: str = None,
tool_call_id: str = None, tool_call_name: str = None, tool_response: str = None,
prompt_messages: list[PromptMessage] = None
) -> list[PromptMessage]:
"""
Organize prompt messages
"""
if not prompt_messages:
prompt_messages = [
SystemPromptMessage(content=prompt_template),
UserPromptMessage(content=query),
]
else:
if tool_response:
prompt_messages = prompt_messages.copy()
prompt_messages.append(
ToolPromptMessage(
content=tool_response,
tool_call_id=tool_call_id,
name=tool_call_name,
)
)
return prompt_messages