2024-01-02 23:42:00 +08:00
|
|
|
import logging
|
2024-01-23 19:58:23 +08:00
|
|
|
from typing import cast, Optional, List
|
|
|
|
|
|
|
|
from langchain import WikipediaAPIWrapper
|
|
|
|
from langchain.callbacks.base import BaseCallbackHandler
|
|
|
|
from langchain.tools import BaseTool, WikipediaQueryRun, Tool
|
|
|
|
from pydantic import BaseModel, Field
|
2024-01-02 23:42:00 +08:00
|
|
|
|
|
|
|
from core.agent.agent.agent_llm_callback import AgentLLMCallback
|
2024-01-23 19:58:23 +08:00
|
|
|
from core.agent.agent_executor import PlanningStrategy, AgentConfiguration, AgentExecutor
|
2024-01-02 23:42:00 +08:00
|
|
|
from core.application_queue_manager import ApplicationQueueManager
|
|
|
|
from core.callback_handler.agent_loop_gather_callback_handler import AgentLoopGatherCallbackHandler
|
|
|
|
from core.callback_handler.index_tool_callback_handler import DatasetIndexToolCallbackHandler
|
|
|
|
from core.callback_handler.std_out_callback_handler import DifyStdOutCallbackHandler
|
2024-01-23 19:58:23 +08:00
|
|
|
from core.entities.application_entities import ModelConfigEntity, InvokeFrom, \
|
|
|
|
AgentEntity, AgentToolEntity, AppOrchestrationConfigEntity
|
2024-01-02 23:42:00 +08:00
|
|
|
from core.memory.token_buffer_memory import TokenBufferMemory
|
|
|
|
from core.model_runtime.entities.model_entities import ModelFeature, ModelType
|
|
|
|
from core.model_runtime.model_providers import model_provider_factory
|
|
|
|
from core.model_runtime.model_providers.__base.large_language_model import LargeLanguageModel
|
2024-01-23 19:58:23 +08:00
|
|
|
from core.tools.tool.dataset_retriever.dataset_retriever_tool import DatasetRetrieverTool
|
2024-01-02 23:42:00 +08:00
|
|
|
from extensions.ext_database import db
|
|
|
|
from models.dataset import Dataset
|
|
|
|
from models.model import Message
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
class AgentRunnerFeature:
|
|
|
|
def __init__(self, tenant_id: str,
|
|
|
|
app_orchestration_config: AppOrchestrationConfigEntity,
|
|
|
|
model_config: ModelConfigEntity,
|
|
|
|
config: AgentEntity,
|
|
|
|
queue_manager: ApplicationQueueManager,
|
|
|
|
message: Message,
|
|
|
|
user_id: str,
|
|
|
|
agent_llm_callback: AgentLLMCallback,
|
|
|
|
callback: AgentLoopGatherCallbackHandler,
|
|
|
|
memory: Optional[TokenBufferMemory] = None,) -> None:
|
|
|
|
"""
|
|
|
|
Agent runner
|
|
|
|
:param tenant_id: tenant id
|
|
|
|
:param app_orchestration_config: app orchestration config
|
|
|
|
:param model_config: model config
|
|
|
|
:param config: dataset config
|
|
|
|
:param queue_manager: queue manager
|
|
|
|
:param message: message
|
|
|
|
:param user_id: user id
|
|
|
|
:param agent_llm_callback: agent llm callback
|
|
|
|
:param callback: callback
|
|
|
|
:param memory: memory
|
|
|
|
"""
|
|
|
|
self.tenant_id = tenant_id
|
|
|
|
self.app_orchestration_config = app_orchestration_config
|
|
|
|
self.model_config = model_config
|
|
|
|
self.config = config
|
|
|
|
self.queue_manager = queue_manager
|
|
|
|
self.message = message
|
|
|
|
self.user_id = user_id
|
|
|
|
self.agent_llm_callback = agent_llm_callback
|
|
|
|
self.callback = callback
|
|
|
|
self.memory = memory
|
|
|
|
|
|
|
|
def run(self, query: str,
|
|
|
|
invoke_from: InvokeFrom) -> Optional[str]:
|
|
|
|
"""
|
|
|
|
Retrieve agent loop result.
|
|
|
|
:param query: query
|
|
|
|
:param invoke_from: invoke from
|
|
|
|
:return:
|
|
|
|
"""
|
|
|
|
provider = self.config.provider
|
|
|
|
model = self.config.model
|
|
|
|
tool_configs = self.config.tools
|
|
|
|
|
|
|
|
# check model is support tool calling
|
|
|
|
provider_instance = model_provider_factory.get_provider_instance(provider=provider)
|
|
|
|
model_type_instance = provider_instance.get_model_instance(ModelType.LLM)
|
|
|
|
model_type_instance = cast(LargeLanguageModel, model_type_instance)
|
|
|
|
|
|
|
|
# get model schema
|
|
|
|
model_schema = model_type_instance.get_model_schema(
|
|
|
|
model=model,
|
|
|
|
credentials=self.model_config.credentials
|
|
|
|
)
|
|
|
|
|
|
|
|
if not model_schema:
|
|
|
|
return None
|
|
|
|
|
|
|
|
planning_strategy = PlanningStrategy.REACT
|
|
|
|
features = model_schema.features
|
|
|
|
if features:
|
|
|
|
if ModelFeature.TOOL_CALL in features \
|
|
|
|
or ModelFeature.MULTI_TOOL_CALL in features:
|
|
|
|
planning_strategy = PlanningStrategy.FUNCTION_CALL
|
|
|
|
|
|
|
|
tools = self.to_tools(
|
|
|
|
tool_configs=tool_configs,
|
|
|
|
invoke_from=invoke_from,
|
|
|
|
callbacks=[self.callback, DifyStdOutCallbackHandler()],
|
|
|
|
)
|
|
|
|
|
|
|
|
if len(tools) == 0:
|
|
|
|
return None
|
|
|
|
|
|
|
|
agent_configuration = AgentConfiguration(
|
|
|
|
strategy=planning_strategy,
|
|
|
|
model_config=self.model_config,
|
|
|
|
tools=tools,
|
|
|
|
memory=self.memory,
|
|
|
|
max_iterations=10,
|
|
|
|
max_execution_time=400.0,
|
|
|
|
early_stopping_method="generate",
|
|
|
|
agent_llm_callback=self.agent_llm_callback,
|
|
|
|
callbacks=[self.callback, DifyStdOutCallbackHandler()]
|
|
|
|
)
|
|
|
|
|
|
|
|
agent_executor = AgentExecutor(agent_configuration)
|
|
|
|
|
|
|
|
try:
|
|
|
|
# check if should use agent
|
|
|
|
should_use_agent = agent_executor.should_use_agent(query)
|
|
|
|
if not should_use_agent:
|
|
|
|
return None
|
|
|
|
|
|
|
|
result = agent_executor.run(query)
|
|
|
|
return result.output
|
|
|
|
except Exception as ex:
|
|
|
|
logger.exception("agent_executor run failed")
|
|
|
|
return None
|
|
|
|
|
|
|
|
def to_dataset_retriever_tool(self, tool_config: dict,
|
|
|
|
invoke_from: InvokeFrom) \
|
|
|
|
-> Optional[BaseTool]:
|
|
|
|
"""
|
|
|
|
A dataset tool is a tool that can be used to retrieve information from a dataset
|
|
|
|
:param tool_config: tool config
|
|
|
|
:param invoke_from: invoke from
|
|
|
|
"""
|
|
|
|
show_retrieve_source = self.app_orchestration_config.show_retrieve_source
|
|
|
|
|
|
|
|
hit_callback = DatasetIndexToolCallbackHandler(
|
|
|
|
queue_manager=self.queue_manager,
|
|
|
|
app_id=self.message.app_id,
|
|
|
|
message_id=self.message.id,
|
|
|
|
user_id=self.user_id,
|
|
|
|
invoke_from=invoke_from
|
|
|
|
)
|
|
|
|
|
|
|
|
# get dataset from dataset id
|
|
|
|
dataset = db.session.query(Dataset).filter(
|
|
|
|
Dataset.tenant_id == self.tenant_id,
|
|
|
|
Dataset.id == tool_config.get("id")
|
|
|
|
).first()
|
|
|
|
|
|
|
|
# pass if dataset is not available
|
|
|
|
if not dataset:
|
|
|
|
return None
|
|
|
|
|
|
|
|
# pass if dataset is not available
|
|
|
|
if (dataset and dataset.available_document_count == 0
|
|
|
|
and dataset.available_document_count == 0):
|
|
|
|
return None
|
|
|
|
|
|
|
|
# get retrieval model config
|
|
|
|
default_retrieval_model = {
|
|
|
|
'search_method': 'semantic_search',
|
|
|
|
'reranking_enable': False,
|
|
|
|
'reranking_model': {
|
|
|
|
'reranking_provider_name': '',
|
|
|
|
'reranking_model_name': ''
|
|
|
|
},
|
|
|
|
'top_k': 2,
|
|
|
|
'score_threshold_enabled': False
|
|
|
|
}
|
|
|
|
|
|
|
|
retrieval_model_config = dataset.retrieval_model \
|
|
|
|
if dataset.retrieval_model else default_retrieval_model
|
|
|
|
|
|
|
|
# get top k
|
|
|
|
top_k = retrieval_model_config['top_k']
|
|
|
|
|
|
|
|
# get score threshold
|
|
|
|
score_threshold = None
|
|
|
|
score_threshold_enabled = retrieval_model_config.get("score_threshold_enabled")
|
|
|
|
if score_threshold_enabled:
|
|
|
|
score_threshold = retrieval_model_config.get("score_threshold")
|
|
|
|
|
|
|
|
tool = DatasetRetrieverTool.from_dataset(
|
|
|
|
dataset=dataset,
|
|
|
|
top_k=top_k,
|
|
|
|
score_threshold=score_threshold,
|
|
|
|
hit_callbacks=[hit_callback],
|
|
|
|
return_resource=show_retrieve_source,
|
|
|
|
retriever_from=invoke_from.to_source()
|
|
|
|
)
|
|
|
|
|
2024-01-23 19:58:23 +08:00
|
|
|
return tool
|