QChatGPT/pkg/openai/modelmgr.py
2023-03-05 15:39:13 +08:00

185 lines
5.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""OpenAI 接口底层封装
目前使用的对话接口有:
ChatCompletion - gpt-3.5-turbo 等模型
Completion - text-davinci-003 等模型
此模块封装此两个接口的请求实现,为上层提供统一的调用方式
"""
import openai, logging, threading, asyncio
import openai.error as aiE
COMPLETION_MODELS = {
'text-davinci-003',
'text-davinci-002',
'code-davinci-002',
'code-cushman-001',
'text-curie-001',
'text-babbage-001',
'text-ada-001',
}
CHAT_COMPLETION_MODELS = {
'gpt-3.5-turbo',
'gpt-3.5-turbo-0301',
}
EDIT_MODELS = {
}
IMAGE_MODELS = {
}
class ModelRequest:
"""模型接口请求父类"""
can_chat = False
runtime: threading.Thread = None
ret = {}
proxy: str = None
request_ready = True
error_info: str = "若在没有任何错误的情况下看到这句话请带着配置文件上报Issues"
def __init__(self, model_name, user_name, request_fun, http_proxy:str = None, time_out = None):
self.model_name = model_name
self.user_name = user_name
self.request_fun = request_fun
self.time_out = time_out
if http_proxy != None:
self.proxy = http_proxy
openai.proxy = self.proxy
self.request_ready = False
async def __a_request__(self, **kwargs):
"""异步请求"""
try:
self.ret:dict = await self.request_fun(**kwargs)
self.request_ready = True
except aiE.APIConnectionError as e:
self.error_info = "{}\n请检查网络连接或代理是否正常".format(e)
raise ConnectionError(self.error_info)
except ValueError as e:
self.error_info = "{}\n该错误可能是由于http_proxy格式设置错误引起的"
except Exception as e:
self.error_info = "{}\n由于请求异常产生的未知错误,请查看日志".format(e)
raise Exception(self.error_info)
def request(self, **kwargs):
"""向接口发起请求"""
if self.proxy != None: #异步请求
self.request_ready = False
loop = asyncio.new_event_loop()
self.runtime = threading.Thread(
target=loop.run_until_complete,
args=(self.__a_request__(**kwargs),)
)
self.runtime.start()
else: #同步请求
self.ret = self.request_fun(**kwargs)
def __msg_handle__(self, msg):
"""将prompt dict转换成接口需要的格式"""
return msg
def ret_handle(self):
'''
API消息返回处理函数
若重写该方法应检查异步线程状态或在需要检查处super该方法
'''
if self.runtime != None and isinstance(self.runtime, threading.Thread):
self.runtime.join(self.time_out)
if self.request_ready:
return
raise Exception(self.error_info)
def get_total_tokens(self):
try:
return self.ret['usage']['total_tokens']
except:
return 0
def get_message(self):
return self.message
def get_response(self):
return self.ret
class ChatCompletionModel(ModelRequest):
"""ChatCompletion接口的请求实现"""
Chat_role = ['system', 'user', 'assistant']
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.ChatCompletion.create
else:
request_fun = openai.ChatCompletion.acreate
self.can_chat = True
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
def request(self, prompts, **kwargs):
prompts = self.__msg_handle__(prompts)
kwargs['messages'] = prompts
super().request(**kwargs)
self.ret_handle()
def __msg_handle__(self, msgs):
temp_msgs = []
# 把msgs拷贝进temp_msgs
for msg in msgs:
temp_msgs.append(msg.copy())
return temp_msgs
def get_message(self):
return self.ret["choices"][0]["message"]['content'] #需要时直接加载加快请求速度,降低内存消耗
class CompletionModel(ModelRequest):
"""Completion接口的请求实现"""
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.Completion.create
else:
request_fun = openai.Completion.acreate
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
def request(self, prompts, **kwargs):
prompts = self.__msg_handle__(prompts)
kwargs['prompt'] = prompts
super().request(**kwargs)
self.ret_handle()
def __msg_handle__(self, msgs):
prompt = ''
for msg in msgs:
prompt = prompt + "{}: {}\n".format(msg['role'], msg['content'])
# for msg in msgs:
# if msg['role'] == 'assistant':
# prompt = prompt + "{}\n".format(msg['content'])
# else:
# prompt = prompt + "{}:{}\n".format(msg['role'] , msg['content'])
prompt = prompt + "assistant: "
return prompt
def get_message(self):
return self.ret["choices"][0]["text"]
def create_openai_model_request(model_name: str, user_name: str = 'user', http_proxy:str = None) -> ModelRequest:
"""使用给定的模型名称创建模型请求对象"""
if model_name in CHAT_COMPLETION_MODELS:
model = ChatCompletionModel(model_name, user_name, http_proxy)
elif model_name in COMPLETION_MODELS:
model = CompletionModel(model_name, user_name, http_proxy)
else :
log = "找不到模型[{}],请检查配置文件".format(model_name)
logging.error(log)
raise IndexError(log)
logging.debug("使用接口[{}]创建模型请求[{}]".format(model.__class__.__name__, model_name))
return model