QChatGPT/pkg/provider/modelmgr/modelmgr.py
2024-05-07 14:28:52 +00:00

110 lines
4.0 KiB
Python

from __future__ import annotations
import aiohttp
from . import entities
from ...core import app
from . import token, api
from .apis import chatcmpl, anthropicmsgs, moonshotchatcmpl, deepseekchatcmpl
FETCH_MODEL_LIST_URL = "https://api.qchatgpt.rockchin.top/api/v2/fetch/model_list"
class ModelManager:
"""模型管理器"""
ap: app.Application
model_list: list[entities.LLMModelInfo]
requesters: dict[str, api.LLMAPIRequester]
token_mgrs: dict[str, token.TokenManager]
def __init__(self, ap: app.Application):
self.ap = ap
self.model_list = []
self.requesters = {}
self.token_mgrs = {}
async def get_model_by_name(self, name: str) -> entities.LLMModelInfo:
"""通过名称获取模型
"""
for model in self.model_list:
if model.name == name:
return model
raise ValueError(f"无法确定模型 {name} 的信息,请在元数据中配置")
async def initialize(self):
# 初始化token_mgr, requester
for k, v in self.ap.provider_cfg.data['keys'].items():
self.token_mgrs[k] = token.TokenManager(k, v)
for api_cls in api.preregistered_requesters:
api_inst = api_cls(self.ap)
await api_inst.initialize()
self.requesters[api_inst.name] = api_inst
# 尝试从api获取最新的模型信息
try:
async with aiohttp.ClientSession() as session:
async with session.request(
method="GET",
url=FETCH_MODEL_LIST_URL,
# 参数
params={
"version": self.ap.ver_mgr.get_current_version()
},
) as resp:
model_list = (await resp.json())['data']['list']
for model in model_list:
for index, local_model in enumerate(self.ap.llm_models_meta.data['list']):
if model['name'] == local_model['name']:
self.ap.llm_models_meta.data['list'][index] = model
break
else:
self.ap.llm_models_meta.data['list'].append(model)
await self.ap.llm_models_meta.dump_config()
except Exception as e:
self.ap.logger.debug(f'获取最新模型列表失败: {e}')
default_model_info: entities.LLMModelInfo = None
for model in self.ap.llm_models_meta.data['list']:
if model['name'] == 'default':
default_model_info = entities.LLMModelInfo(
name=model['name'],
model_name=None,
token_mgr=self.token_mgrs[model['token_mgr']],
requester=self.requesters[model['requester']],
tool_call_supported=model['tool_call_supported']
)
break
for model in self.ap.llm_models_meta.data['list']:
try:
model_name = model.get('model_name', default_model_info.model_name)
token_mgr = self.token_mgrs[model['token_mgr']] if 'token_mgr' in model else default_model_info.token_mgr
requester = self.requesters[model['requester']] if 'requester' in model else default_model_info.requester
tool_call_supported = model.get('tool_call_supported', default_model_info.tool_call_supported)
model_info = entities.LLMModelInfo(
name=model['name'],
model_name=model_name,
token_mgr=token_mgr,
requester=requester,
tool_call_supported=tool_call_supported
)
self.model_list.append(model_info)
except Exception as e:
self.ap.logger.error(f"初始化模型 {model['name']} 失败: {e} ,请检查配置文件")