mirror of
https://github.com/RockChinQ/QChatGPT.git
synced 2024-11-16 11:42:44 +08:00
117 lines
3.4 KiB
Python
117 lines
3.4 KiB
Python
from __future__ import annotations
|
|
|
|
import asyncio
|
|
import typing
|
|
import json
|
|
|
|
import openai
|
|
import openai.types.chat.chat_completion as chat_completion
|
|
|
|
from .. import api
|
|
from ....core import entities as core_entities
|
|
from ... import entities as llm_entities
|
|
|
|
|
|
class OpenAIChatCompletion(api.LLMAPIRequester):
|
|
client: openai.AsyncClient
|
|
|
|
async def initialize(self):
|
|
self.client = openai.AsyncClient(
|
|
api_key="",
|
|
base_url=self.ap.cfg_mgr.data["openai_config"]["reverse_proxy"],
|
|
timeout=self.ap.cfg_mgr.data["process_message_timeout"],
|
|
)
|
|
|
|
async def _req(
|
|
self,
|
|
args: dict,
|
|
) -> chat_completion.ChatCompletion:
|
|
self.ap.logger.debug(f"req chat_completion with args {args}")
|
|
return await self.client.chat.completions.create(**args)
|
|
|
|
async def _make_msg(
|
|
self,
|
|
chat_completion: chat_completion.ChatCompletion,
|
|
) -> llm_entities.Message:
|
|
chatcmpl_message = chat_completion.choices[0].message.dict()
|
|
|
|
message = llm_entities.Message(**chatcmpl_message)
|
|
|
|
return message
|
|
|
|
async def _closure(
|
|
self,
|
|
req_messages: list[dict],
|
|
conversation: core_entities.Conversation,
|
|
) -> llm_entities.Message:
|
|
self.client.api_key = conversation.use_model.token_mgr.get_token()
|
|
|
|
args = self.ap.cfg_mgr.data["completion_api_params"].copy()
|
|
args["model"] = conversation.use_model.name
|
|
|
|
if conversation.use_model.tool_call_supported:
|
|
tools = await self.ap.tool_mgr.generate_tools_for_openai(conversation)
|
|
|
|
if tools:
|
|
args["tools"] = tools
|
|
|
|
# 设置此次请求中的messages
|
|
messages = req_messages
|
|
args["messages"] = messages
|
|
|
|
# 发送请求
|
|
resp = await self._req(args)
|
|
|
|
# 处理请求结果
|
|
message = await self._make_msg(resp)
|
|
|
|
return message
|
|
|
|
async def request(
|
|
self, query: core_entities.Query, conversation: core_entities.Conversation
|
|
) -> typing.AsyncGenerator[llm_entities.Message, None]:
|
|
"""请求"""
|
|
|
|
pending_tool_calls = []
|
|
|
|
req_messages = [
|
|
m.dict(exclude_none=True) for m in conversation.prompt.messages
|
|
] + [m.dict(exclude_none=True) for m in conversation.messages]
|
|
|
|
# req_messages.append({"role": "user", "content": str(query.message_chain)})
|
|
|
|
msg = await self._closure(req_messages, conversation)
|
|
|
|
yield msg
|
|
|
|
pending_tool_calls = msg.tool_calls
|
|
|
|
req_messages.append(msg.dict(exclude_none=True))
|
|
|
|
while pending_tool_calls:
|
|
for tool_call in pending_tool_calls:
|
|
func = tool_call.function
|
|
|
|
parameters = json.loads(func.arguments)
|
|
|
|
func_ret = await self.ap.tool_mgr.execute_func_call(
|
|
query, func.name, parameters
|
|
)
|
|
|
|
msg = llm_entities.Message(
|
|
role="tool", content=json.dumps(func_ret, ensure_ascii=False), tool_call_id=tool_call.id
|
|
)
|
|
|
|
yield msg
|
|
|
|
req_messages.append(msg.dict(exclude_none=True))
|
|
|
|
# 处理完所有调用,继续请求
|
|
msg = await self._closure(req_messages, conversation)
|
|
|
|
yield msg
|
|
|
|
pending_tool_calls = msg.tool_calls
|
|
|
|
req_messages.append(msg.dict(exclude_none=True))
|