feat: 通过元数据生成模型列表

This commit is contained in:
RockChinQ 2024-03-16 21:43:09 +08:00
parent 9489783846
commit 97449065df
4 changed files with 113 additions and 163 deletions

View File

@ -53,6 +53,8 @@ class Application:
plugin_setting_meta: config_mgr.ConfigManager = None plugin_setting_meta: config_mgr.ConfigManager = None
llm_models_meta: config_mgr.ConfigManager = None
# ========================= # =========================
ctr_mgr: center_mgr.V2CenterAPI = None ctr_mgr: center_mgr.V2CenterAPI = None

View File

@ -18,7 +18,6 @@ class LoadConfigStage(stage.BootingStage):
ap.provider_cfg = await config.load_json_config("data/config/provider.json", "templates/provider.json") ap.provider_cfg = await config.load_json_config("data/config/provider.json", "templates/provider.json")
ap.system_cfg = await config.load_json_config("data/config/system.json", "templates/system.json") ap.system_cfg = await config.load_json_config("data/config/system.json", "templates/system.json")
ap.plugin_setting_meta = await config.load_json_config("plugins/plugins.json", "templates/plugin-settings.json") ap.plugin_setting_meta = await config.load_json_config("plugins/plugins.json", "templates/plugin-settings.json")
await ap.plugin_setting_meta.dump_config() await ap.plugin_setting_meta.dump_config()
@ -27,3 +26,6 @@ class LoadConfigStage(stage.BootingStage):
ap.adapter_qq_botpy_meta = await config.load_json_config("data/metadata/adapter-qq-botpy.json", "templates/metadata/adapter-qq-botpy.json") ap.adapter_qq_botpy_meta = await config.load_json_config("data/metadata/adapter-qq-botpy.json", "templates/metadata/adapter-qq-botpy.json")
await ap.adapter_qq_botpy_meta.dump_config() await ap.adapter_qq_botpy_meta.dump_config()
ap.llm_models_meta = await config.load_json_config("data/metadata/llm-models.json", "templates/metadata/llm-models.json")
await ap.llm_models_meta.dump_config()

View File

@ -1,11 +1,15 @@
from __future__ import annotations from __future__ import annotations
import aiohttp
from . import entities from . import entities
from ...core import app from ...core import app
from . import token from . import token, api
from .apis import chatcmpl from .apis import chatcmpl
FETCH_MODEL_LIST_URL = "https://api.qchatgpt.rockchin.top/api/v2/fetch/model_list"
class ModelManager: class ModelManager:
"""模型管理器""" """模型管理器"""
@ -13,10 +17,16 @@ class ModelManager:
ap: app.Application ap: app.Application
model_list: list[entities.LLMModelInfo] model_list: list[entities.LLMModelInfo]
requesters: dict[str, api.LLMAPIRequester]
token_mgrs: dict[str, token.TokenManager]
def __init__(self, ap: app.Application): def __init__(self, ap: app.Application):
self.ap = ap self.ap = ap
self.model_list = [] self.model_list = []
self.requesters = {}
self.token_mgrs = {}
async def get_model_by_name(self, name: str) -> entities.LLMModelInfo: async def get_model_by_name(self, name: str) -> entities.LLMModelInfo:
"""通过名称获取模型 """通过名称获取模型
@ -24,171 +34,73 @@ class ModelManager:
for model in self.model_list: for model in self.model_list:
if model.name == name: if model.name == name:
return model return model
raise ValueError(f"不支持模型: {name} , 请检查配置文件") raise ValueError(f"无法确定模型 {name} 的信息,请在元数据中配置")
async def initialize(self): async def initialize(self):
openai_chat_completion = chatcmpl.OpenAIChatCompletion(self.ap)
await openai_chat_completion.initialize() # 初始化token_mgr, requester
openai_token_mgr = token.TokenManager("openai", list(self.ap.provider_cfg.data['openai-config']['api-keys'])) self.token_mgrs = {
"openai": token.TokenManager("openai", list(self.ap.provider_cfg.data['openai-config']['api-keys']))
}
model_list = [ for api_cls in api.preregistered_requesters:
entities.LLMModelInfo( api_inst = api_cls(self.ap)
name="gpt-3.5-turbo", await api_inst.initialize()
token_mgr=openai_token_mgr, self.requesters[api_inst.name] = api_inst
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-3.5-turbo-1106",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-3.5-turbo-16k",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-3.5-turbo-0613",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-3.5-turbo-16k-0613",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-3.5-turbo-0301",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
)
]
self.model_list.extend(model_list) # 尝试从api获取最新的模型信息
try:
async with aiohttp.ClientSession() as session:
async with session.request(
method="GET",
url=FETCH_MODEL_LIST_URL,
) as resp:
model_list = (await resp.json())['data']['list']
gpt4_model_list = [ for model in model_list:
entities.LLMModelInfo(
name="gpt-4-0125-preview",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-4-turbo-preview",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-4-1106-preview",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-4-vision-preview",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-4",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-4-0613",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-4-32k",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
),
entities.LLMModelInfo(
name="gpt-4-32k-0613",
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=True,
)
]
self.model_list.extend(gpt4_model_list) for index, local_model in enumerate(self.ap.llm_models_meta.data['list']):
if model['name'] == local_model['name']:
self.ap.llm_models_meta.data['list'][index] = model
break
else:
self.ap.llm_models_meta.data['list'].append(model)
one_api_model_list = [ await self.ap.llm_models_meta.dump_config()
entities.LLMModelInfo(
name="OneAPI/SparkDesk",
model_name='SparkDesk',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
entities.LLMModelInfo(
name="OneAPI/chatglm_pro",
model_name='chatglm_pro',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
entities.LLMModelInfo(
name="OneAPI/chatglm_std",
model_name='chatglm_std',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
entities.LLMModelInfo(
name="OneAPI/chatglm_lite",
model_name='chatglm_lite',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
entities.LLMModelInfo(
name="OneAPI/qwen-v1",
model_name='qwen-v1',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
entities.LLMModelInfo(
name="OneAPI/qwen-plus-v1",
model_name='qwen-plus-v1',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
entities.LLMModelInfo(
name="OneAPI/ERNIE-Bot",
model_name='ERNIE-Bot',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
entities.LLMModelInfo(
name="OneAPI/ERNIE-Bot-turbo",
model_name='ERNIE-Bot-turbo',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
entities.LLMModelInfo(
name="OneAPI/gemini-pro",
model_name='gemini-pro',
token_mgr=openai_token_mgr,
requester=openai_chat_completion,
tool_call_supported=False,
),
]
self.model_list.extend(one_api_model_list) except Exception as e:
self.ap.logger.debug(f'获取最新模型列表失败: {e}')
default_model_info: entities.LLMModelInfo = None
for model in self.ap.llm_models_meta.data['list']:
if model['name'] == 'default':
default_model_info = entities.LLMModelInfo(
name=model['name'],
model_name=None,
token_mgr=self.token_mgrs[model['token_mgr']],
requester=self.requesters[model['requester']],
tool_call_supported=model['tool_call_supported']
)
break
for model in self.ap.llm_models_meta.data['list']:
try:
model_name = model.get('model_name', default_model_info.model_name)
token_mgr = self.token_mgrs[model['token_mgr']] if 'token_mgr' in model else default_model_info.token_mgr
requester = self.requesters[model['requester']] if 'requester' in model else default_model_info.requester
tool_call_supported = model.get('tool_call_supported', default_model_info.tool_call_supported)
model_info = entities.LLMModelInfo(
name=model['name'],
model_name=model_name,
token_mgr=token_mgr,
requester=requester,
tool_call_supported=tool_call_supported
)
self.model_list.append(model_info)
except Exception as e:
self.ap.logger.error(f"初始化模型 {model['name']} 失败: {e} ,请检查配置文件")

View File

@ -0,0 +1,34 @@
{
"list": [
{
"name": "default",
"requester": "openai-chat-completion",
"token_mgr": "openai",
"tool_call_supported": false
},
{
"name": "gpt-3.5-turbo",
"tool_call_supported": true
},
{
"name": "gpt-4",
"tool_call_supported": true
},
{
"name": "gpt-4-turbo-preview",
"tool_call_supported": true
},
{
"name": "gpt-4-32k",
"tool_call_supported": true
},
{
"model_name": "SparkDesk",
"name": "OneAPI/SparkDesk"
},
{
"model_name": "gemini-pro",
"name": "OneAPI/gemini-pro"
}
]
}