QChatGPT/pkg/openai/modelmgr.py

189 lines
5.9 KiB
Python
Raw Normal View History

2023-03-05 15:39:13 +08:00
"""OpenAI 接口底层封装
目前使用的对话接口有
ChatCompletion - gpt-3.5-turbo 等模型
Completion - text-davinci-003 等模型
此模块封装此两个接口的请求实现为上层提供统一的调用方式
"""
2023-03-03 14:12:53 +08:00
import openai, logging, threading, asyncio
2023-03-05 13:52:43 +08:00
import openai.error as aiE
COMPLETION_MODELS = {
'text-davinci-003',
'text-davinci-002',
'code-davinci-002',
'code-cushman-001',
'text-curie-001',
'text-babbage-001',
'text-ada-001',
}
2023-01-01 22:52:27 +08:00
CHAT_COMPLETION_MODELS = {
'gpt-3.5-turbo',
'gpt-3.5-turbo-0301',
2023-03-18 12:38:48 +08:00
'gpt-4',
'gpt-4-0314',
'gpt-4-32k',
'gpt-4-32k-0314'
2023-01-01 22:52:27 +08:00
}
EDIT_MODELS = {
}
IMAGE_MODELS = {
}
2023-03-02 16:41:03 +08:00
2023-03-05 15:39:13 +08:00
class ModelRequest:
"""模型接口请求父类"""
can_chat = False
2023-03-05 15:39:13 +08:00
runtime: threading.Thread = None
2023-03-05 13:52:43 +08:00
ret = {}
2023-03-05 15:39:13 +08:00
proxy: str = None
2023-03-05 13:52:43 +08:00
request_ready = True
2023-03-05 15:39:13 +08:00
error_info: str = "若在没有任何错误的情况下看到这句话请带着配置文件上报Issues"
2023-03-05 13:52:43 +08:00
def __init__(self, model_name, user_name, request_fun, http_proxy:str = None, time_out = None):
self.model_name = model_name
self.user_name = user_name
self.request_fun = request_fun
2023-03-05 13:52:43 +08:00
self.time_out = time_out
2023-03-03 14:12:53 +08:00
if http_proxy != None:
self.proxy = http_proxy
openai.proxy = self.proxy
2023-03-05 13:52:43 +08:00
self.request_ready = False
2023-03-03 14:12:53 +08:00
async def __a_request__(self, **kwargs):
2023-03-05 15:39:13 +08:00
"""异步请求"""
2023-03-05 13:52:43 +08:00
try:
self.ret:dict = await self.request_fun(**kwargs)
self.request_ready = True
except aiE.APIConnectionError as e:
self.error_info = "{}\n请检查网络连接或代理是否正常".format(e)
raise ConnectionError(self.error_info)
2023-03-05 14:06:07 +08:00
except ValueError as e:
self.error_info = "{}\n该错误可能是由于http_proxy格式设置错误引起的"
2023-03-05 13:52:43 +08:00
except Exception as e:
self.error_info = "{}\n由于请求异常产生的未知错误,请查看日志".format(e)
raise type(e)(self.error_info)
def request(self, **kwargs):
2023-03-05 15:39:13 +08:00
"""向接口发起请求"""
2023-03-03 14:12:53 +08:00
if self.proxy != None: #异步请求
2023-03-05 13:52:43 +08:00
self.request_ready = False
2023-03-03 15:20:42 +08:00
loop = asyncio.new_event_loop()
2023-03-03 14:12:53 +08:00
self.runtime = threading.Thread(
2023-03-03 15:20:42 +08:00
target=loop.run_until_complete,
2023-03-03 14:12:53 +08:00
args=(self.__a_request__(**kwargs),)
)
self.runtime.start()
else: #同步请求
self.ret = self.request_fun(**kwargs)
2023-03-03 00:07:53 +08:00
def __msg_handle__(self, msg):
"""将prompt dict转换成接口需要的格式"""
return msg
def ret_handle(self):
2023-03-03 14:12:53 +08:00
'''
API消息返回处理函数
若重写该方法应检查异步线程状态或在需要检查处super该方法
'''
if self.runtime != None and isinstance(self.runtime, threading.Thread):
2023-03-05 13:52:43 +08:00
self.runtime.join(self.time_out)
if self.request_ready:
return
raise Exception(self.error_info)
2023-03-03 14:12:53 +08:00
def get_total_tokens(self):
2023-03-03 14:12:53 +08:00
try:
return self.ret['usage']['total_tokens']
2023-03-05 13:52:43 +08:00
except:
2023-03-03 14:12:53 +08:00
return 0
def get_message(self):
return self.message
2023-03-03 14:12:53 +08:00
def get_response(self):
return self.ret
2023-03-05 15:39:13 +08:00
class ChatCompletionModel(ModelRequest):
2023-03-05 15:39:13 +08:00
"""ChatCompletion接口的请求实现"""
Chat_role = ['system', 'user', 'assistant']
2023-03-03 14:12:53 +08:00
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.ChatCompletion.create
else:
request_fun = openai.ChatCompletion.acreate
self.can_chat = True
2023-03-03 14:12:53 +08:00
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
2023-03-03 00:07:53 +08:00
def request(self, prompts, **kwargs):
2023-03-03 14:12:53 +08:00
prompts = self.__msg_handle__(prompts)
kwargs['messages'] = prompts
super().request(**kwargs)
self.ret_handle()
2023-01-01 22:52:27 +08:00
2023-03-03 00:07:53 +08:00
def __msg_handle__(self, msgs):
temp_msgs = []
2023-03-03 00:07:53 +08:00
# 把msgs拷贝进temp_msgs
for msg in msgs:
2023-03-03 00:07:53 +08:00
temp_msgs.append(msg.copy())
return temp_msgs
2023-03-03 14:12:53 +08:00
def get_message(self):
return self.ret["choices"][0]["message"]['content'] #需要时直接加载加快请求速度,降低内存消耗
2023-01-01 22:52:27 +08:00
class CompletionModel(ModelRequest):
2023-03-05 15:39:13 +08:00
"""Completion接口的请求实现"""
2023-03-03 14:12:53 +08:00
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.Completion.create
else:
request_fun = openai.Completion.acreate
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
2023-01-01 22:52:27 +08:00
2023-03-03 00:07:53 +08:00
def request(self, prompts, **kwargs):
2023-03-03 14:12:53 +08:00
prompts = self.__msg_handle__(prompts)
kwargs['prompt'] = prompts
super().request(**kwargs)
self.ret_handle()
2023-01-01 22:52:27 +08:00
2023-03-03 00:07:53 +08:00
def __msg_handle__(self, msgs):
prompt = ''
for msg in msgs:
2023-03-03 00:07:53 +08:00
prompt = prompt + "{}: {}\n".format(msg['role'], msg['content'])
# for msg in msgs:
# if msg['role'] == 'assistant':
# prompt = prompt + "{}\n".format(msg['content'])
# else:
# prompt = prompt + "{}:{}\n".format(msg['role'] , msg['content'])
prompt = prompt + "assistant: "
return prompt
2023-01-01 22:52:27 +08:00
2023-03-03 14:12:53 +08:00
def get_message(self):
return self.ret["choices"][0]["text"]
def create_openai_model_request(model_name: str, user_name: str = 'user', http_proxy:str = None) -> ModelRequest:
"""使用给定的模型名称创建模型请求对象"""
if model_name in CHAT_COMPLETION_MODELS:
2023-03-03 14:12:53 +08:00
model = ChatCompletionModel(model_name, user_name, http_proxy)
elif model_name in COMPLETION_MODELS:
2023-03-03 14:12:53 +08:00
model = CompletionModel(model_name, user_name, http_proxy)
else :
log = "找不到模型[{}],请检查配置文件".format(model_name)
logging.error(log)
raise IndexError(log)
2023-03-02 23:20:28 +08:00
logging.debug("使用接口[{}]创建模型请求[{}]".format(model.__class__.__name__, model_name))
return model